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1.Introduction
From the development of Einstein´s theory of general relativity, 
the modelling of superdense mater configurations is an 
interesting research area [1,2]. In the last decades, such models 
allow explain the behavior of massive objects as neutron stars, 
quasars, pulsars, black holes and white dwarfs [3,4]. Komathiraj 
and Maharaj [3] find new classes exact solutions to the Einstein-
Maxwell system of equations for a charged sphere with a 
particular choice of the electric field intensity and one of the 
gravitational potentials [4]. have obtained a class of solutions to 
the Einstein-Maxwell system assuming a particular choice of the 
electric field intensity. 

In theoretical works of realistic stellar models, it is important 
to include the pressure anisotropy [5-7]. Bowers and Liang [5] 
extensively discuss the effect of pressure anisotropy in general 
relativity. The existence of anisotropy within a star can be 
explained by the presence of a solid core, phase transitions, a 
type III super fluid, a pion condensation [6] or another physical 
phenomena as the presence of an electrical field [7]. The physics 
of ultrahigh densities is not well understood and many of the 
strange stars’ studies have been performed within the framework 
of the MIT-Bag model [8]. 

In this model, the strange matter equation of state has a simple 

linear form given by ( )Bp 4
3
1

−= ρ  where ρ is the energy 
density, p is the isotropic pressure and B is the bag constant. 
Many researchers have used a great variety of mathematical 
techniques to try to obtain exact solutions for quark stars within 
the framework of MIT-Bag model: Komathiraj and Maharaj 
[3] found two new classes of exact solutions to the Einstein-
Maxwell system of equations with a particular form of the 
gravitational potential and isotropic pressure. Malaver [9,10] 
also has obtained some models for compact stars considering a 
potential gravitational that depends on an adjustable parameter. 
Thirukkanesh and Maharaj [11] studied the behavior of compact 
relativistic objects with anisotropic pressure in the presence 
of the electromagnetic field [12]. generated new models for 
quark stars with charged anisotropic matter considering a linear 
equation of state. Thirukkanesh and Ragel [13] obtained new 
models for compact stars with quark matter. Sunzu et al. found 
new classes of solutions with specific forms for the measure of 
anisotropy [14]. 

Several mathematical modeling within the framework of the 
general theory of relativity has been used to explain the behavior 
and structure of massive objects as neutron stars, quasars, black 
holes, pulsars and white dwarfs [15-25] and requires finding 
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the exact solutions of the Einstein-Maxwell system [3]. A 
detailed and systematic analysis was carried out by Delgaty and 
Lake [26] which obtained several analytical solutions that can 
describe realistic stellar configurations. Islam et al. [27] have 
solved the Einstein-Maxwell field equations and obtained mass-
radio relations that allow modelling stellar objects at various 
regions of Hertzsprung-Russel diagram such as red dwarfs, 
white dwarfs, red giants, super giants and brown dwarfs.

Within use of Einstein´s field equations, important advances 
have been made to model the interior of a star. In particular, 
Feroze and Siddiqui [15,16] and Malaver [17,18] consider 
a quadratic equation of state for the matter distribution and 
specify particular forms for the gravitational potential and 
electric field intensity. Mafa Takisa and Maharaj [19] obtained 
new exact solutions to the Einstein-Maxwell system of 
equations with a polytropic equation of state. Thirukkanesh 
and Ragel [20] have obtained particular models of anisotropic 
fluids with polytropic equation of state which are consistent 
with the reported experimental observations. Malaver [21,22] 
generated new exact solutions to the Einstein-Maxwell system 
considering Van der Waals modified equation of state with and 
without polytropical exponent and Thirukkanesh and Ragel [23] 
presented a anisotropic strange quark matter model by imposing 
a linear barotropic equation of state with Tolman IV form for the 
gravitational potential. Mak and Harko [24] found a relativistic 
model of strange quark star with the suppositions of spherical 
symmetry and conformal Killing vector.

Brown dwarfs are not really stars, because there is no 
thermonuclear fusion in their core. These objects are smaller 
and cooler than stars, but too massive to be considered planets 
closest stars [28]. Using a quadratic equation of state with a 
particular metric function and taking pressure anisotropy into 
account, in this research we developed new mathematical 
models for a brown dwarfs. This is how the article is structured: 
we introduce Einstein’s field equations for anisotropic fluid 
distribution in section 2. In section 3, we build novel models for 
charged anisotropic matter by selecting an electric field strength 
and gravitational potential that enable the solution of the field 
equations. The requirements for physical acceptability are 
covered in Section 4. Section 5 looks at these novel solutions’ 
physical characteristics and validity. Section 6 presents the 
findings drawn from the outcomes of the computational 
implementations.

2. Einstein Field Equations
We consider a spherically symmetric, static and homogeneous 
and anisotropic spacetime in Schwarzschild coordinates given 
by 

 )èdö+(d èr+dre+dte=ds 2(r)2(r)2 22222ë2 sinν−  (1)

where )(rν  and )(rλ are two arbitrary functions. 
The Einstein field equations for the charged anisotropic matter 
are given by 
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where ρ  is the energy density, rp is the radial pressure, 

tp  is electric field intensity and tp  is the tangential 

pressure, respectively. Using the transformations, 2cr=x , 
(r)e=Z(x) 2ë− and (r)e=(x)yA 2í22 with arbitrary 

constants A and c>0, suggested by Durga pal and Bannerji [29], 

the metric (1) take the form
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σ  is the charge density and dots denoting differentiation with 
respect to x. With the transformations of [29], the mass within a 
radius r of the sphere take the form

∫
x

ñ(x)dxx=M(x)
0

3/24c
1  (12)

The interior metric (1) with the charged matter distribution 
should match the exterior spacetime described by the Reissner-
Nordstrom metric:

)èdö+(d èr+dr
r
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Where the total mass and the total charge of the star are denoted 
by M and q2, respectively. The junction conditions at the stellar 
surface are obtained by matching the first and the second 
fundamental forms for the interior metric (1) and the exterior 
metric (13). 

In this paper, we assume the following quadratic equation of 
state 

 γβρα −+2ñ=pr  (14) 

where α , β and γ are arbitrary constants

3. A New Class of Anisotropic Models
In order to solve the Einstein-Maxwell field equations, we 
take the form of the gravitational potential Z(x) as Z(x) 
=1-ax proposed for [30] where a is a real constant. This 
potential is regular at the origin and well behaved in the 
interior of the sphere [31] for the electric field intensity, we 
make the particular choice:

)1()(
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2

axKxxKxZ
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E
−==  (15)

This electric field is finite at the center of the star and 
remains continuous in the interior. Using Z(x) and eq. (15) 
in eq. (6), we obtain

( )[ ]axKxaC −−= 13ρ  (16)

Substituting eq. (16) in eq. (14), the radial pressure can be 
written in the form:

( )[ ] ( )[ ] γβα −−−+−−= axKxaCaxKxaCPr 1313 22  (17)

Using eq. (16) in eq. (12), the expression of the mass function is
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With eq. (15) and Z(x) in eq. (11), the charge density is

( )222 328 axKC −=σ  (19)

With the equations (14), (15), (16) and Z(x), eq. (7) becomes:

( )[ ]
( )

( )[ ]
( ) ( ) ( )ax

aKx
axCax

axKxa
ax

axKxaC
y
y

−
+−

−
−

−
−−

+
−

−−
=

1441414
13

14
13 2 γβα

      (20)

Integrating eq. (20) we obtain:
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1c  is the constant of integration 

The metric functions λ2e and ν2e can be written as:
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and the anisotropy ∆ is given
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4. Conditions of Physical Acceptability 

 For a model to be physically acceptable, the following conditions 
should be satisfied [26,30]: 

1.	 The metric potentials λ2e and ν2e assume finite values 

throughoutthe stellar interior and are singularity-free at the 

center r=0. 

2.	 The energy density ρ should be positive and a decreasing 

function inside the star.

3.	 The radial pressure also should be positive and a decreasing 

function of radial parameter. 

4.	 The radial pressure and density gradients 0≤dr
dP r  and 

0 r R≤ ≤  for 0 r R≤ ≤  . 

5.	 The anisotropy is zero at the center r=0, i.e. Δ(r=0) =0. 

6.	 Any physically acceptable model must satisfy the causality 

condition, that is, for the radial sound speed 
ρd

dPv r
sr =
2  

,we should have 
20 1srv≤ ≤ .

7.	 The charged interior solution should be matched with the 
Reissner–Nordström exterior solution, for which the metric 
is given by

222222
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The conditions (ii) and (iv) imply that the energy density must 
reach a maximum at the center and decrease towards the surface 
of the sphere.

5. Physical Features of the new Models

We now present the analysis of the physical characteristics for 

the new models. The metric functions λ2e and 
ν2e have finite 

values and remain positive throughout the stellar interior. At the 

center ( )2 0 1e λ =  and ( ) ( ) ∗−= AcAe 22
1

202 1ν . 

We show that in r=0 ( ) ( ) 00
)(2

0
)(2 =

′
=

′
== r

r
r

r ee νλ
 and this 

makes is possible to verify that the gravitational potentials are 

regular at the center. The energy density and radial pressure 

are positive and well behaved within the star. Also, we 

have for the central density and pressure ( ) aC30 =ρ and

( ) γβα −+= aCCaPr 390 22 . 

 In the surface of the star r=R, we have ( ) 0== and
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For a realistic star, it is expected that the gradient of energy 
density and radial pressure should be decreasing functions of 
the radial coordinate r. In this model, for all 0 ≤ r ≤ R, we obtain 
respectively:

( ) arKCaCrKCr
dr
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According to the equations (27) and (28), the energy density and 
radial pressure decrease from the centre to the surface of the star.

The causality condition demands that the radial sound speed 

defined as 
ρ

dPv r
sr =2

 
should not exceed the speed of light 

and it must be within the limit 0 ≤ 
2
srv ≤1 in the interior of the 

star [26]. In this model, we have with the transformations of 

Durgapal and Bannerji [29]:

0 ≤ βααα ++− 4322 226 raKCrKCCa  ≤1         (29)

On the boundary r=R, the solution must match the Reissner–

Nordström exterior space–time and the continuity of eν  and 

eλ across the boundary r=R is 

2
2 2

2

21 M Qe e
R R

ν λ−= = − +           (30)

Then for the matching conditions, we obtain:
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and the surface red-shift ZS can be expressed by the following 
relation 

1
)(21

1
−

−
=

r
rM

Z S                          (32)

The figures 1,2,3,4,5,6,7,8, 9 and 10 represent the plots of 

C
E
2

2

 , 2σ  , ρ , rP , SZ , 2
srv , 

dr
dρ , 

dr
dP r , M and ∆ with the radial 

coordinate. In every graph we looked at C=1 and a=0.0003.

Figure 1. Electric field intensity against the radial coordinate 
for K=0.000012 (solid line), K=0.0000121 (longdash line), 
K=0.0000122 (dashdot line) and K=0.0000123 (spacedot ine). 
For all the cases a=0.0003.

Figure 2. Charge density against the radial coordinate for 
K=0.000012 (solid line), K=0.0000121 (longdash line), 
K=0.0000122 (dashdot line) and K=0.0000123 (spacedot line). 
For all the cases a=0.0003

Figure 3. Energy density against the radial parameter for 
K=0.000012 (solid line), K=0.0000121 (longdash line), 
K=0.0000122 (dashdot line) and K=0.0000123 (spacedot line). 
For all the cases a=0.0003.

Figure 4. Radial pressure against the radial parameter for 
K=0.000012 (solid line), K=0.0000121 (longdash line), 
K=0.0000122 (dashdot line) and K=0.0000123 (spacedot line). 
For all the cases a=0.0003.
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Figure 5. Surface red-shift against the radial parameter for 
K=0.000012 (solid line), K=0.0000121 (longdash line), 
K=0.0000122 (dashdot line) and K=0.0000123 (spacedot line). 
For all the cases a=0.0003

Figure 6. Radial speed sound 2
srv  against the radial parameter 

for K=0.000012 (solid line), K=0.0000121 (longdash line), 

K=0.0000122 (dashdot line) and K=0.0000123 (spacedot line). 

For all the cases a=0.0003

Figure 7. Energy density gradient against the radial parameter 
for K=0.000012 (solid line), K=0.0000121 (longdash line), 
K=0.0000122 (dashdot line) and K=0.0000123 (spacedot line). 
For all the cases a=0.0003

Figure 8. Radial pressure gradient against the radial parameter 
for K=0.000012 (solid line), K=0.0000121 (longdash line), 
K=0.0000122 (dashdot line) and K=0.0000123 (spacedot line). 
For all the cases a=0.0003
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Figure 9. Mass function against the radial parameter for 
K=0.000012 (solid line), K=0.0000121 (longdash line), 
K=0.0000122 (dashdot line) and K=0.0000123 (spacedot line). 
For all the cases a=0.0003

Figure 10. Anisotropy against the radial parameter for 
K=0.000012 (solid line), K=0.0000121 (longdash line), 
K=0.0000122 (dashdot line) and K=0.0000123 (spacedot line). 
For all the cases a=0.0003

In Figure 1 is noted that the electric field intensity stays positive, 

continuous, and increases monotonically throughout the stellar 

interior and the charge density is a function that steadily drops, 

as shown in Figure 2. The energy density remains positive, 

continuous and is monotonically decreasing function throughout 

the interior of the star as depicted in the Figure 3 for all values 

of K considered. The radial pressure is non negative and is a 

decreasing function with the radial parameter as shown in 

Figure 4. Figure 5 also displays the surface red-shift profiles 

for all the values of K, demonstrating that the surface red-shift 

likewise displays the desired behavior within the stellar model. 

In figure 6, we note that 
2
srv  within the desired range 0 ≤ 

2
srv ≤1 

for all the values of K. The figures 7 and 8 respectively show 

that the gradients of density and radial pressure are decreasing 

throughout the star. The mass function in Figure 11 is continuous, 

increasing, takes finite values, and behaves well in the interior 

of the star for a range of K values taken into consideration The 

anisotropic component Δ, as plotted in Figure 10, vanishes at the 

center of the star, or Δ(r=0)=0 and is continuously decreasing. 

The reported and calculated masses of four brown dwarfs stars 

and calculated values of ZS with the selected values of K are 

given in Table 1. 

Table 1. Observed and calculated values of stellar masses, surface 

redshift ZS and the chosen K parameter for four candidates to 

brown dwarfs with a=0.0003

Brown Dwarfs Values of K Reported mass 
M(Mʘ)

Calculated mass      
M(Mʘ) Calculated ZS

2MASS 0727 + 1710 0.0000120  0.04 0.03994385 0.004570214
2MASS J0348 -6022 0.0000121  0.04 0.03942488 0.004510433

DEN 0255-4700 0.0000122  0.04 0.03890590 0.004450662
2MASS 0729 -3954 0.0000123  0.035 0.03838693 0.004390902

Mʘ = sun’s mass
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We can compare the values calculated for the mass function 

with experimental data. We found that the calculated masses 

are very similar to 0.04Mʘ. For K=0.000012 the values of a 

and K allow us to obtain a mass of 0.03994385M⊙ which can 

correspond to astronomic object 2MASS 0727 + 1710 [32]. 

With K=0.0000121, the resulting mass is very similar to brown 

dwarf 2MASS J0348 - 6022 whose observed mass is 0.04Mʘ 

and the values of the parameters a=0.0003 and K=0.0000122 

also generate the mass 0.04M⊙ that can correspond to the stellar 

object DEN 0255 - 4700 [33]. The brown dwarf 2MASS J0348 

- 6022 is the fastest-rotating brown dwarf confirmed as of 2022 

[34] and DEN 0255-4700 is the faintest brown dwarf with a low 

visible magnitude [35]. For the case K=0.0000123 we obtained 

a comparable mass with the star 2MASS 0729 -3954 located 26 

light years away from the sun and is a single star of spectral class 

T8 D [36]. In all the cases, the surface red-shift is a continuous, 

monotonically increasing function with radial coordinate in 

every instance, reaching its maximum value ZS =0.004570214 

for K= 0.000012, which is consistent with the astronomical 

bodies studied for Islam et al. [27].

6. Conclusion 
In this work, we solved Einstein-Maxwell field equations to 
construct some simple relativistic charged star models for a static 
spherically symmetric locally anisotropic fluid distribution. By 
choosing a metric potential, figuring out the electric charge 
distribution, and applying the quadratic equation of state, we 
have investigated the behavior of fluid distribution. An analytical 
stellar model with such physical properties could be very helpful 
in explaining the internal structure of electrically charged stars. 
The newly found models are in perfect agreement with the 
Reissner–Nordström exterior metric across the boundary r=R, 
since matter variables and the gravitational potentials of this 
study are compatible with the physical analysis of these stars.

The suggested model operates well and may be compared with 
of brown dwarfs 2MASS 0727+1710, 2MASS 0729-3954, DEN 
0255-4700 and 2MASS J0348-6022 according to plots created 
and physical properties pertaining to matter, radial pressure, 
density, anisotropy, surface redshift and charge density. Although 
the brown dwarfs are not as huge as the least massive main-

sequence stars, they are nevertheless large enough to release 
some heat and light from the fusion of deuterium, and they have 
more mass than the largest gas giant planets overall. 

Our current method’s specific goal is to show that we can 
reconstruct the models of different astronomic objects that are 
consistent with the available observational data by selecting the 
right constant parameters. As a result, for academics working in 
this area, the models examined in this paper may have substantial 
astrophysical significance.
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