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Abstract
This study investigates the impacts of climate change variability on farming communities in the Sudan Savannah 
agroecological zone of Taraba State, Nigeria. This rain-fed agricultural region faces challenges from shifting rainfall 
patterns, rising temperatures, and extreme weather events. Using climatic data (1980–2020), trends in rainfall, minimum, 
and maximum temperatures were examined for Karim Lamido and Lau local government areas. The findings reveal an 
increasing trend in minimum temperatures in both areas, with slopes indicating warming at 0.0347°C per year. Contrasting 
trends in maximum temperatures were observed: a slight, statistically insignificant decline in Karim Lamido and a significant 
increase in Lau. Rainfall trends show high inter-annual variability, with Karim Lamido experiencing a marginal decline 
(−1.86mm/year), while Lau displays negligible positive changes. These variations exacerbate vulnerabilities, including 
reduced crop yields, water stress, and unpredictable growing seasons. The study also identified challenges in modeling 
rainfall due to its variability, with higher Mean Absolute Deviation (MAD) and Mean Square Error (MSE) values for 
rainfall predictions compared to temperature. The vulnerabilities of farming communities highlight the need for adaptation 
strategies, such as adopting drought-tolerant crops, improved irrigation systems, and agroforestry practices. Policymakers 
are urged to invest in climate-smart infrastructure, enhance weather forecasting, and promote sustainable agricultural 
practices to mitigate risks. This study emphasizes the importance of localized climate assessments and targeted interventions 
to enhance resilience among farming communities in Northern Nigeria.

Keywords: Adaptation strategies, Climate change variability, Farming communities, Rainfall and temperature trends and Sudan 
Savannah

Introduction
Climate change poses a significant threat to agricultural 
production systems globally, particularly in regions like the 
Sudan Savannah Agroecological Zone of Taraba State, Nigeria. 
This region, characterized by its reliance on rain-fed agriculture 
and vulnerability to climatic variability, is experiencing 
increasingly severe impacts from shifting rainfall patterns, rising 
temperatures, and extreme weather events. These changes are 
directly affecting crop yields, livestock productivity, and the 
overall food security of farming communities. Recent studies, 
such as those by the Intergovernmental Panel on Climate Change 

[1], have highlighted the detrimental effects of climate change 
on Nigerian agriculture. In the Sudan Savannah, altered rainfall 
patterns, including increased rainfall intensity and prolonged 
dry spells, have led to decreased crop yields, increased pest 
and disease outbreaks, and soil erosion. Rising temperatures 
have exacerbated these challenges, leading to increased 
evapotranspiration, water stress for crops and livestock, and 
heat stress in animals. Furthermore, extreme weather events like 
droughts and floods have become more frequent and intense, 
causing significant disruptions to agricultural activities and 
livelihoods.
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In 2024, Taraba State experienced unprecedented heatwaves, 
with temperatures soaring to 41°C, leading to severe drought 
conditions. These extreme temperatures resulted in significant 
crop failures, notably among yam farmers, who reported 
substantial losses due to the heat-induced spoilage of their 
produce (AllAfrica, 2025). Similarly, farmers in the region have 
observed changes in rainfall patterns, such as early cessation 
and irregular distribution, which have adversely affected crop 
yields. For instance, in Katsina State, similar climatic conditions 
have led to substantial losses in crops like sorghum, millet, and 
maize, underscoring the broader regional implications of climate 
change on agriculture [2].

Despite these challenges, there is a growing awareness among 
farmers regarding climate change and its impacts. In Taraba 
State, studies have shown that farmers possess a high level of 
awareness and have adopted various adaptation strategies to 
mitigate the adverse effects on rice production. These strategies 
include adjusting planting dates, diversifying crop varieties, and 
implementing soil conservation techniques [3].

While existing literature, such as the IPCC Sixth Assessment 
Report (2021) and studies by Akinbile et al [1], acknowledges 
the adverse impacts of climate change on Nigerian agriculture, 
a critical knowledge gap persists regarding the specific 
implications for farming communities within this particular 
zone. This study aims to address this gap by investigating 
the multifaceted and cascading effects of climate change 
variability on these communities. Specifically, the study seeks 
to understand how altered rainfall patterns, rising temperatures, 
and extreme weather events are influencing crop yields, livestock 
productivity, and ultimately, the food security and livelihoods of 
farming households in the Sudan Savannah of Taraba State.

By analyzing recent climatic trends, assessing their impact on 
agricultural productivity, and evaluating the effectiveness of 
local adaptation strategies, this study seeks to contribute to the 
development of sustainable agricultural practices and inform 
policy interventions tailored to enhance the resilience of farming 
communities in the face of climate change.

Description of Study Area
The study area is the Sudan Savannah agroecological zone 
of Taraba State, Nigeria located between latitudes 8°40’N to 
9°36’N and longitudes 10°05’E to 11°50’E (Fig. 1). The region 
shares boundaries with Bauchi and Gombe States to the north, 
Adamawa State to the east, Plateau State to the west, and Ibi, 
Gassol and Bali LGAs to the South.

This region is characterized by a semi-arid climate with 
distinct wet and dry seasons. The landscape is predominantly 
flat with scattered hills and rocky outcrops. The vegetation 
is predominantly savanna grassland with scattered trees and 
shrubs. The soil type is generally sandy loam with low fertility. 
Major LGAs within the Sudan Savannah zone include Jalingo, 
Lau, Ardo Kola and Karim Lamido. The region also transitions 

into the Guinea Savannah and Montane zones towards the south 
and southeast, respectively. This region experiences a tropical 
savanna climate, marked by a distinct wet season (May–October) 
and dry season (November–April). Annual rainfall ranges 
between 600mm and 1,000mm, with variability significantly 
affecting agricultural productivity (Nigeria Meteorological 
Agency, 2023). The mean annual temperature fluctuates between 
26°C and 38°C, with extreme temperatures often experienced 
during the dry season.

The Sudan Savannah zone is predominantly agrarian, with 
farming being the primary livelihood. Staple crops such as millet, 
sorghum, maize, and groundnuts are widely cultivated, while 
livestock rearing is also integral to the local economy. Farming 
communities in the region are highly vulnerable to climate 
variability due to their dependence on rain-fed agriculture and 
limited adaptive resources. The Sudan Savannah agroecological 
zone serves as a critical agricultural hub for Taraba State. Its 
productivity is influenced by climatic factors such as rainfall 
variability and rising temperatures, which exacerbate risks such 
as crop failure, desertification, and water scarcity [3].

As indicated by recent studies, climate variability, including 
erratic rainfall and prolonged dry spells, has intensified over the 
past decade, adversely impacting farming systems in the region. 
These changes not only threaten food security but also heighten 
rural poverty and migration pressures [4].

   

Fig. 1. Map of Taraba State Showing the Sudan Savannah 
Agroecological zone

Methodology 
The study acquired ArcGIS 10.5 software for processing data 
of climatic elements of the selected two LGAs within the study 
area between 1980 and 2020. Online rainfall and minimum/
maximum temperature for 1980-2020 was obtained from 
DivaGIS climatic data. The two climatic elements (rainfall and 
temperature) were analyzed in this study. These two climatic 
parameters were considered because of their great influence on 
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the general climate and agricultural activities. One hundred and 
thirty-two (132) equidistant points covering the entire study area 
were generated using the fishnet module of ArcGIS 10.5. The 
generated points were used to extract the values of the rainfall 
data through the “extract by point” module of ArcGIS 10.5. The 
coordinates and the rainfall value of each of the points were used 
to interpolate the points using kriging method of the Arctool box 
of ArcGIS 10.5. Climatic parameters data for each of the months 
(January-December) were summed and were used to generate 
monthly mean records of the places using bar graph. The graphs 
show the mean of the climatic parameters of each month which 
was used to determine mean monthly records of the climatic 
elements according to the seasons in Nigeria; June-October and 
November-March. 

The mean annual temperature was obtained by adding the 
values of minimum and maximum temperature of a particular 
point in a particular year and dividing the results by two using 
Microsoft Excel. The data were processed into line graphs while 
the trends, R2 and other parameters were added in Microsoft 
excel environment.

The 5-years moving average and inter annual variability in the 
time series of mean annual rainfall, minimum and maximum 
temperature was determined using coefficient of variation (CV), 
while the trends in the time series of these parameters (annual 
rainfall, minimum and maximum temperature) were determined 
using simple regression and correlation analysis. The coefficient 
of variation is given as;

                

where x  the mean of the entire series and σ is the standard 
deviation from the mean of the series.

In order to determine the trend in the time series of the annual 
rainfall, minimum and maximum temperature in the two stations 
considered for the period 1980 – 2020, the simple regression 
analysis was used where by the values in the time series were 
regressed on time. The equation of the line of best fit was then 
computed using the Minitab statistical software. 

The equation is as follows;
  

              
Where a = intercept of the regression, b = regression of the 
coefficient and c = error term or residuals of the regression.

To determine whether the trend line in the time series analyzed is 
upward or downward, the simple correlation coefficient (r) was 
used and defined as follows;
            

                          

where r is correlation coefficient, N is total number of 
observations in the series, Y is the observation in the series, x 
is the time in years, σx is the standard deviation of x and σy is 
the standard deviation of y. Where the value of (r) is positive, 
it indicates upward trend in the time series analysed and where 
the value of (r) is negative, it indicates down ward trend in the 
time series analysed. The data were presented using tables, 
frequencies, figures and percentages. 

Result of the findings
Nature and extent of Climatic Trend
Nature and Extent of Minimum Temperature Trend
The findings of the study on the nature and extent of 
minimum temperature trend in the study area is shown in          

 

      
     Fig. 1. Minimum Temperature for Karim Lamido
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Fig. 2. Minimum Temperature for Lau LGA

Figure 1 is a times series plot showing the minimum temperature 
of Karim Lamido LGA in the Sudan Savannah agroecological 
zone of Taraba State over a period of 41 years (1980 to 2020). 
The average minimum temperature across the 41 years depicted 
in the graph is 23.2°C; y = 0.0347x + 20.34: This is the equation 
for the superimposed linear regression line. The slope (0.0347) 
is positive, which suggests an increasing trend in minimum 
temperature over time. The 5 per Moving Average indicates 
that the data points plotted for each year represent the average 

of the minimum temperatures for the preceding five years. 
So, for example, the data point for 1980 likely represents the 
average minimum temperature from 1976 to 1980. The solid line 
represents the overall mean annual minimum temperature across 
the 41 years. Linear (Mean Annual): The dashed line represents 
the linear regression line fitted through the data points.

The minimum temperature for Lau LGA is presented in Fig. 2

The figure 2 shows the minimum temperature of Lau 
LGA over a period of 41 years (1980 to 2020). The value 
23.2°C represent the average minimum temperature 
across the 41 years depicted in the graph as shown by the 
equation y = 0.0347x + 20.34 for the superimposed linear 
regression line. The slope (0.0347) is positive, which 
suggests an increasing trend in minimum temperature 
over time. The 5 per Moving Average indicates that the 
data points plotted for each year represent the average of 
the minimum temperatures for the preceding five years. 
So, for example, the data point for 1980 likely represents 

the average minimum temperature from 1976 to 1980. 
The solid line likely represents the overall mean annual 
minimum temperature across the 41 years. The dashed line 
represents the linear regression line fitted through the data 
points (Mean Annual).

Nature and Extent of Maximum Temperature Trend
The maximum temperature for Karim Lamido LGA is 
presented in Fig. 3.

    
   Fig. 3. Maximum Temperature for Karim Lamido
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Figure 3 shows the temporal trend of maximum temperature 
of Karim Lamido in the Sudan Savannah agroecological zone 
of Taraba State over the period 1980 to 2020, with three main 
components: Mean Annual Maximum Temperature (Blue 
Line) which represents the year-to-year variations in maximum 
temperatures, showing fluctuations over the study period. The 
blue line highlights annual variability in temperature, the 5-Year 
Moving Average (Orange Line) which smoothens out short-term 
fluctuations and highlights long-term trends in the data. This line 
indicates a clearer trend in maximum temperatures over time and 
Mean Line (Gray) which is the horizontal line and represents the 
average maximum temperature over the entire period.

The linear trendline, with an equation y=−0.0029x+35.258y 
= -0.0029x + 35.258 and an R2R^2 value of 0.001, suggests a 
very slight declining trend in maximum temperatures over time. 
However, the R2R^2 value indicates that the trendline explains 
only 0.1% of the variability in the data, suggesting the trend is 
statistically insignificant.

The observed inter-annual variations in maximum temperature 
suggest fluctuations that can impact farming practices. 
Unpredictable temperature changes could influence crop growth, 
flowering, and yields, increasing vulnerability for small-scale 
farmers reliant on stable climatic conditions. The negligible 
downward trend (R2=0.001R^2 = 0.001) implies no significant 
change in maximum temperatures over the 41-year period. 
This might indicate that other climate variables (e.g., rainfall, 
humidity) could play a more significant role in influencing 
climate change impacts in the region.

Periods of high maximum temperatures, such as the late 1990s 
and early 2000s, may correspond to heat stress conditions that 
affect crop production and livestock health. Conversely, cooler 
periods might benefit certain crops but could also indicate 
changing climatic patterns.

 The maximum temperature for Lau LGA is presented in Fig. 4.

 

Fig. 4. Maximum Temperature for Lau
Figure 4 illustrates the trend of maximum temperature for Lau 
LGA from 1980 to 2020. It includes several key elements: Mean 
Annual Maximum Temperature (Blue Line) which shows year-
to-year variations in maximum temperature, reflecting annual 
fluctuations, 5-Year Moving Average (Orange Line) which 
smooths the temperature data, highlighting long-term trends 
while reducing short-term fluctuations and Mean Line (Gray) 
which represents the overall mean of maximum temperature 
across the period.

The trendline (Linear Trendline - Dotted Blue Line), described 
by the equation y=0.0708x+33.67 which indicates an increasing 
trend in maximum temperature over the 41-year period. The 
R2R^2 value suggests that 47.35% of the variability in the 
annual maximum temperature is explained by the linear trend. 
This indicates a moderately strong upward trend. The trendline 
demonstrates a significant rise in maximum temperatures, with 

an annual rate of increase of approximately 0.0708°C. This 
warming trend could directly affect small-scale farming by 
altering growing conditions for crops and livestock. The sharp 
increases and decreases in some years, such as the late 1990s 
and early 2000s, reflect periods of extreme temperatures, which 
are critical in assessing vulnerability. Extreme heat events can 
lead to crop failure, water shortages, and livestock stress. Over 
time, higher maximum temperatures can result in reduced soil 
moisture, increased evapotranspiration, and higher irrigation 
demands, all of which can threaten agricultural productivity and 
livelihoods.

Nature and Extent of Mean Annual Rainfall Trend
The result of the findings of the study on the nature and extent 
of annual rainfall trend in the study area is presented in fig. 5.
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  Fig. 5 Mean Annual Rainfall for Karim Lamido

Figure 5 presents annual rainfall trends and a 5-year moving 
average for Karim Lamido LGA, with a linear trendline and 
statistical metrics over a 41-year period (1980–2020). The blue 
line shows significant inter-annual fluctuations in rainfall over 
the period. The peaks (e.g., in the early 1990s and mid-2000s) 
and troughs (e.g., mid-1990s and early 2000s) indicate high 
variability, which could challenge water availability for small-
scale farmers. The moving average smooths out short-term 
fluctuations and provides a clearer view of medium-term trends. 
There appears to be a cyclical pattern with alternating wetter and 
drier phases. The grey line represents the average annual rainfall 
(~1128.8 mm) for the entire period. Several years recorded 
rainfall below this average, pointing to potential periods of 
drought stress. The dotted blue line shows a slight downward 
trend in annual rainfall over the years, with the equation y = 
-1.8578x + 1128.8 and R2=0.0101R^2 = 0.0101. The negative 
slope indicates a marginal decrease in rainfall (~1.86 mm/year), 
although the low R2R^2 suggests the trend is not strong and 
other factors may influence rainfall variability. The low R2R^2 
value (0.0101) implies that only about 1% of the variability in 
annual rainfall can be explained by the linear trend.

The figure provides essential insights into climate patterns 
affecting Karim Lamido LGA in Northern Taraba State, 
particularly rainfall, which is a critical factor for small-scale 
farming: The observed high inter-annual variability highlights 
the unpredictability of rainfall patterns, leading to uncertain 
growing seasons. This is a key vulnerability factor for rain-
fed agriculture in Northern Taraba State. Although the decline 
is slight, a persistent decrease in rainfall could exacerbate 
water scarcity, reduce crop yields, and increase dependence on 
irrigation or alternative water sources.

Periods of below-average rainfall (e.g., mid-1990s) may 
correspond to drought events, while peaks may align with floods, 
both of which can disrupt agricultural activities and threaten 
livelihoods. Small-scale farmers, who typically lack access to 
advanced water management systems, are more exposed to such 
variability. Extended dry spells or delayed rainfall can lead to 
crop failures, food insecurity, and economic losses.

The result of the findings of the study on the nature and extent of 
annual rainfall trend in Lau LGA is presented in fig. 6.

Fig. 6 Mean Annual Rainfall for Lau
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Figure 6 depicts annual rainfall trends, a 5-year moving average, 
and a linear trendline for the years 1980–2020 for Lau LGA. 
The blue line shows significant inter-annual fluctuations in 
rainfall. There are pronounced peaks (e.g., in the early 1990s 
and late 2010s) and troughs (e.g., mid-1990s and early 2000s), 
demonstrating high variability that may disrupt farming 
schedules. The moving average smooths the variability and 
highlights a general cyclical pattern in rainfall, with alternating 
wet and dry phases. The horizontal grey line represents the 
average annual rainfall (~1028 mm). Rainfall levels frequently 
fluctuate above and below this mean, indicating periods 
of excess and deficit rainfall. The dotted line and equation 
(y=0.1623x+1028) suggest a slight positive trend in rainfall 
over time. The very low R2R^2 value (R2=7E−05R^2 = 7E-05) 
indicates that this trend is statistically insignificant, with almost 
no explanatory power for the rainfall variability. The rainfall 
variability is driven by complex factors rather than a clear linear 
trend, which is reflected in the low R2R^2. The figure 6 provides 
key insights into rainfall patterns, an essential climatic factor 
influencing agriculture in the Sudan Savanna agroecological 
zone of Taraba State: The high variability in annual rainfall can 
result in uncertainty in planting and harvesting seasons, directly 
impacting agricultural productivity and food security. Periods of 
below-average rainfall may correspond to drought stress, while 
above-average rainfall could lead to waterlogging or flooding.

Although the trendline suggests a slight increase in rainfall, 
the change is minimal and statistically insignificant. Farmers 
may still face challenges from unpredictable rainfall patterns 
rather than consistent increases or decreases. The 5-year 
moving average shows alternating wet and dry periods, which 
could influence crop planning and water resource management. 

Such cycles may necessitate flexible farming systems to adapt 
to changing conditions. Small-scale farmers are particularly 
vulnerable to both excess and deficit rainfall due to their limited 
capacity to manage water resources (e.g., irrigation systems) or 
adapt to extreme weather events.

Mean Absolute Deviation, Mean Square Error and 
Mean Absolute Percent Error on Moving Average
Test of MAD, MSE, and MAPE for Moving Average (MA) were 
conducted on each moving average of maximum and minimum 
temperature and rainfall to determine the level of accuracy of 
the moving average for forecasting of the parameter. Table 1 
presents three statistical metrics (MAD, MSE, and MAPE) for 
two locations: Karim and Lau. These metrics are used to evaluate 
the accuracy of a climate model or prediction in relation to actual 
observed temperatures. The key metrics are Mean Absolute 
Deviation (MAD) which measures the average absolute 
difference between the predicted and observed temperatures. 
Lower MAD values indicate better model accuracy. The Mean 
Square Error (MSE) calculates the average squared difference 
between predicted and observed temperatures. More sensitive 
to large errors compared to MAD. Lower MSE values indicate 
better model accuracy. The Mean Absolute Percentage Error 
(MAPE) expresses the average absolute percentage difference 
between predicted and observed temperatures. It provides a 
relative measure of error. Lower MAPE values indicate better 
model accuracy.

Table 1. Mean Absolute Deviation, Mean Square Error or Mean 
Absolute Percent Error on Each Moving Average (Maximum 
Temperature)

Maximum Temperature
 Mean Absolute Deviation (MAD) Mean Square Error (MSE) Mean Absolute Percent Error (MAPE) 

(%)
Karim 0.46599 0.357614 1.327041

Lau 0.485667 0.386917 1.384635

The result of the findings of the study in Table 1 reveal that 
Karim has a slightly lower MAD (0.46599) than Lau (0.485667), 
suggesting that the model might be slightly more accurate 
in predicting temperatures at Karim. Similarly, Karim has a 
lower MSE (0.357614) compared to Lau (0.386917), further 
supporting the notion of better model accuracy at Karim. Both 
locations have comparable MAPE values (1.327041% for Karim 
and 1.384635% for Lau), indicating that the percentage errors 
are relatively small and similar for both locations.

The relatively low values of MAD, MSE, and MAPE suggest 
that the climate model used in the study provides reasonably 
accurate temperature predictions for both Karim and Lau. 
However, the model appears to be slightly more accurate for 
Karim based on the MAD and MSE values.

Table 2. Mean Absolute Deviation, Mean Square Error or Mean 
Absolute Percent Error on Each Moving Average (Minimum 
Temperature)

Minimum Temperature

 Mean Absolute Deviation 
(MAD) Mean Square Error (MSE) Mean Absolute Percent Error 

(MAPE) (%)

Karim Lamido 0.280763 0.135729 1.349238

Lau 0.358414 0.229012 1.696154
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The result of the findings of the study in Table 2 reveals that 
Karim Lamido has a significantly lower MAD (0.280763) 
compared to Lau (0.358414), suggesting that the model is more 
accurate in predicting minimum temperatures at Karim Lamido. 
Similarly, Karim Lamido has a lower MSE (0.135729) compared 
to Lau (0.229012), further supporting the notion of better model 
accuracy at Karim Lamido. Karim Lamido also has a lower 
MAPE (1.349238%) compared to Lau (1.696154%), indicating 
that the percentage errors are smaller at Karim Lamido. The 

relatively low values of MAD, MSE, and MAPE for both 
locations suggest that the climate model used in the study 
provides reasonably accurate minimum temperature predictions. 
However, the model appears to be substantially more accurate 
for Karim Lamido compared to Lau.

Table 3. Mean Absolute Deviation, Mean Square Error or Mean 
Absolute Percent Error on Each Moving Average (Rainfall)

Rainfall
 Mean Absolute Deviation 

(MAD) Mean Square Error (MSE) Mean Absolute Percent Error (MAPE) 
(%)

Karim 178.2609 75436.62 16.75571

Lau 185.2738 77583.99 19.04435

Table 3 presents three statistical metrics (MAD, MSE, and 
MAPE) for rainfall predictions at two locations: Karim and Lau. 
These metrics are used to evaluate the accuracy of a rainfall 
prediction model in the context of assessing climate change 
vulnerability among small-scale farmers in the Sudan Savanna 
agroecological zone of Taraba State.

The Mean Absolute Deviation (MAD) measures the average 
absolute difference between the predicted and observed rainfall 
amounts. Lower MAD values indicate better model accuracy. 
The Mean Square Error (MSE) calculates the average squared 
difference between predicted and observed rainfall amounts. 
More sensitive to large errors compared to MAD. Lower 
MSE values indicate better model accuracy. Mean Absolute 
Percentage Error (MAPE) expresses the average absolute 
percentage difference between predicted and observed rainfall 
amounts. Provides a relative measure of error. Lower MAPE 
values indicate better model accuracy.

The findings of the study in Table 3 reveals that Lau has a 
slightly higher MAD (185.2738) compared to Karim (178.2609), 
suggesting that the model might be slightly less accurate in 
predicting rainfall at Lau. Similarly, Lau has a higher MSE 
(77583.99) compared to Karim (75436.62), further supporting 
the notion of lower model accuracy at Lau. Lau also has a 
higher MAPE (19.04435%) compared to Karim (16.75571%), 
indicating that the percentage errors are larger at Lau. The 
relatively high values of MAD, MSE, and MAPE for both 
locations suggest that the climate model used in the study may 
have limitations in accurately predicting rainfall amounts. The 
model appears to be slightly less accurate for Lau compared to 
Karim.

Implication of Climate Change Variability on Farming 

Communities 
The increasing trend in minimum temperature suggested by the 
figure is consistent with climate change. This warming trend 
could have several implications for small-scale farmers in Sudan 
Savannah agroecological zone, including: changes in crop 
yields, crops have specific temperature requirements for optimal 
growth. Significant deviations from these requirements can 
negatively impact yields. Increased pest and disease pressure: 
warmer temperatures can lead to the proliferation of pests 
and diseases that may damage crops. Changes in planting and 
harvesting seasons: the warming trend may lead to shifts in the 
timing of planting and harvesting seasons. Water scarcity: rising 
temperatures can lead to increased evaporation, potentially 
causing water scarcity and impacting irrigation practices. Heat 
Stress on Crops and Livestock: rising temperatures can reduce 
crop yields, increase pest infestations, and negatively affect 
livestock productivity. Farmers relying on rainfed agriculture 
will be particularly vulnerable. Increased Vulnerability: small-
scale farmers, who often lack resources to invest in climate-
resilient technologies, are likely to experience reduced adaptive 
capacity. This could lead to food insecurity and economic 
challenges.

Discussion of Results
The study shows a consistent increase in minimum temperatures 
in both Karim Lamido and Lau LGAs over the past 41 years, 
with a slope of 0.0347, indicating warming trends. Maximum 
temperatures exhibit mixed trends: a slight, statistically 
insignificant decline in Karim Lamido (slope: -0.0029, R² = 
0.001) and a significant increase in Lau (slope: 0.0708, R² = 
0.4735). These findings corroborate the general trend of global 
warming documented in previous studies, such as IPCC (2021), 
which highlighted increasing temperatures as a key indicator of 
climate change globally. The increasing minimum and maximum 
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temperatures in Lau align with the findings [5, 6], who reported 
rising temperatures in Northern Nigeria. However, the lack of a 
significant trend in maximum temperatures for Karim Lamido 
diverges from these findings and could reflect localized climate 
moderations or variations in microclimatic conditions.

The mean annual rainfall trends in Karim Lamido show high 
inter-annual variability, with a marginal decreasing trend (slope: 
-1.8578 mm/year, R² = 0.0101). These findings echo the work [7]. 
who reported erratic rainfall patterns across Northern Nigeria. 
The cyclical patterns of alternating wetter and drier phases 
observed in this study align with [8]. which attributed similar 
fluctuations in West Africa to natural climatic oscillations. 
However, the weak trend and low R² value suggest that other 
factors, such as regional climatic systems and anthropogenic 
activities, may play more significant roles in shaping rainfall 
patterns. This finding diverges from other studies [9]. which 
reported more pronounced declines in rainfall across Northern 
Nigeria, potentially due to differences in geographic scope or 
data resolution.

The rising temperatures, coupled with high rainfall variability, 
present significant challenges for small-scale farmers in 
Northern Taraba State. Higher minimum temperatures may 
extend the growing season for some crops but can also increase 
evapotranspiration, reducing soil moisture and increasing 
irrigation demands. Similarly, the upward trend in maximum 
temperatures in Lau suggests heightened risks of heat stress, 
which can adversely affect crop yields and livestock health. 
Rainfall variability, characterized by periods of drought and 
extreme rainfall, exacerbates vulnerability by disrupting water 
availability for farming. These findings align with Sissoko 
[10], who identified rainfall variability as a critical driver of 
agricultural vulnerability in Sub-Saharan Africa. However, the 
marginal decline in rainfall observed in this study contrasts with 
the more pronounced decreases reported in studies like Ishaya 
and Abaje [11], indicating localized differences in climate 
impacts.

The agreement between this study and others regarding 
temperature increases underscores the global and regional 
nature of climate change. However, the divergence in 
maximum temperature trends between Karim Lamido and 
Lau highlights the importance of localized studies to capture 
microclimatic variations. Similarly, while the general pattern 
of rainfall variability aligns with broader trends reported in 
West Africa, the weak declining trend observed here suggests 
that Northern Taraba may experience less pronounced rainfall 
changes compared to other parts of Northern Nigeria. This 

nuance reinforces the findings of Abdulkarim et al. [12]. who 
emphasized the need for localized climate impact assessments to 
inform targeted adaptation strategies. The accuracy of the climate 
model is crucial for assessing climate change vulnerability. More 
accurate models provide more reliable projections of future 
climate conditions, which can inform adaptation strategies. The 
slight difference in model accuracy between Karim and Lau 
highlights the importance of considering location-specific factors 
when assessing climate change vulnerability. It’s important 
to acknowledge potential limitations of the data used in the 
analysis, such as data quality, spatial resolution, and temporal 
coverage. These limitations can affect the accuracy of the model 
and the subsequent vulnerability assessment.

The assessment of climate change vulnerability among small-
scale farmers in Sudan Savannah agroecological zone of Taraba 
State utilized statistical metrics-Mean Absolute Deviation 
(MAD), Mean Square Error (MSE), and Mean Absolute 
Percentage Error (MAPE) to evaluate the accuracy of predictions 
for maximum and minimum temperatures and rainfall. The 
findings reveal location-specific variations in prediction 
accuracy, which have significant implications for understanding 
vulnerability and planning adaptation strategies.

The results indicate that for both maximum and minimum 
temperatures, the prediction model performs better in Karim than 
in Lau, as evidenced by lower MAD, MSE, and MAPE values 
in Karim. These findings align with studies such as Adebayo 
et al. [13]. which emphasized the importance of local climatic 
and topographic conditions in influencing model accuracy. The 
observed differences in prediction accuracy may stem from 
localized climatic variations or differences in data availability 
and quality across the study locations. This is consistent with 
findings by Oladipo [14], who highlighted challenges in 
achieving uniform model accuracy across diverse geographic 
locations.

However, the relatively low values of MAPE (1.32%-1.69%) 
in this study suggest that the prediction model is reasonably 
reliable for temperature forecasting. This aligns with work by 
Ade Juwon [15], who identified similar levels of accuracy in 
regional climate models applied to agricultural vulnerability 
assessments in Nigeria.

Rainfall predictions present higher MAD, MSE, and MAPE 
values compared to temperature predictions, indicating lower 
accuracy. The model’s performance is slightly better in Karim, 
with lower error metrics than Lau. Similar challenges in rainfall 
prediction accuracy have been reported by Gbanguba et al.[16], 
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who noted the complexities of modeling rainfall due to its spatial 
and temporal variability, particularly in regions with limited 
meteorological data.

The higher prediction errors for rainfall underscore the need for 
improved data collection and integration of advanced modeling 
techniques, such as machine learning, as recommended by 
Bala et al. [17]. Additionally, the variability in accuracy across 
locations highlights the need to consider local factors when 
interpreting model outputs for vulnerability assessments.

The findings suggest that small-scale farmers in Lau may 
be more vulnerable to climate variability due to less reliable 
rainfall predictions, which could lead to misinformed adaptation 
strategies. These results align with studies by Nwafor et al. 
[18]. who identified rainfall as a critical factor in determining 
agricultural vulnerability to climate change. The relatively 
high MAPE for rainfall (16.76%–19.04%) calls for caution in 
using these predictions for planning purposes. This supports the 
argument by Adamu and Mohammed [19] for combining climate 
models with socio-economic and ecological data to improve 
vulnerability assessments.

The study highlights the varying accuracy of climate models 
in predicting key climatic parameters in Northern Taraba State. 
While the models show reasonable accuracy for temperature, 
rainfall predictions require significant improvement. The findings 
underscore the importance of tailoring climate change adaptation 
strategies to location-specific vulnerabilities and enhancing the 
robustness of climatic data and modeling techniques.

Conclusion
This study has examined the critical impacts of climate change 
variability on farming communities in the Sudan Savannah 
agroecological zone of Taraba State, Nigeria. Analysis of climatic 
data from 1980 to 2020 revealed significant trends, including 
rising minimum temperatures, mixed maximum temperature 
patterns, and highly variable rainfall. These changes have 
profound implications for small-scale agriculture, increasing 
vulnerabilities through reduced crop yields, water scarcity, pest 
outbreaks, and unpredictable farming seasons. The findings 
underscore the challenges faced by farming communities reliant 
on rain-fed agriculture, particularly given the limited adaptive 
capacity and resources available. The study further emphasizes 
the need for accurate climate modeling, particularly for rainfall 
predictions, to better inform decision-making and adaptation 
planning. Despite its limitations, this study offers valuable 
insights into localized climate impacts, reinforcing the necessity 
of region-specific studies to capture microclimatic variations 
and inform targeted interventions.

Recommendations
Based on the findings of the study, the following recommendations 
were made;

I. Adopt drought-resistant crops: Encourage the use of 
resilient crop varieties to withstand changing rainfall 
and temperature patterns. 

II. Improve climate data: Invest in accurate climate 
monitoring and modeling to predict rainfall and 
temperature trends.

III. Train farmers: Provide education on adaptive techniques 
like water conservation and diversified cropping.

IV. Build irrigation systems: Develop small dams and 
water storage facilities to reduce dependence on rain-
fed farming.

V. Establish early warning systems: Create reliable 
weather alerts to help farmers plan activities and 
mitigate risks.
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