Open Access Journal of Physics & Mathematics

Volume 1 | Issue 2

Ribbonness on boundary surface-link

Akio Kawauchi*

Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University, Osaka, Japan

*Corresponding author: Akio Kawauchi, Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University, 3-3-138 Sugimoto, Osaka, 558-8585, Japan.

Citation: Kawauchi, A. (2025). Ribbonness on boundary surface-link. Open Access J. Phys. Math. 1(2), 1-4.

Abstract

It is shown that a boundary surface-link in the 4-sphere is a ribbon surface link if the surface-link obtained from it by surgery along a pairwise nontrivial fusion 1-handle system is a ribbon surface-link. As a corollary, the surface knot obtained from the anti-parallel surface-link of a non-ribbon surface-knot by surgery along a nontrivial fusion 1-handle is a non-ribbon surface-knot. This result answers Cochran's conjecture on non-ribbon sphere-knots in the affirmative.

Keywords: Boundary surface-link, Ribbon surface-link, Anti-parallel surface link, Cochran's conjecture. *Mathematics Subject Classification 2010*: Primary 57N13; Secondary 57Q45

Introduction

A surface-link is a closed (possibly disconnected) closed oriented surface F smoothly embedded in the 4-sphere S⁴. When F is connected, F is called a **surface-knot**. The components F_i (i =1, 2, ..., r) of F are 2-spheres, then F is called a **sphere-link** or an S²-link of r components. A 1-handle system on a surface-link F is a 1-handle system h of disjoint 1-handles h_i (i = 1, 2,...,s) on F smoothly embedded in S⁴. Let F(h) be the surface-link obtained from F by surgery along a 1-handle system h. A ribbon surface-link is the surface-link O(h) obtained from a trivial S2-link O by surgery along a 1-handle system h, [1], [2]. A surface-link F is a boundary surfacelink if there is a system V of disjoint compact connected oriented 3-manifolds V_i (i =1, 2, ..., r) smoothly embedded in S⁴ with $\partial V_i = F_i$ (i = 1, 2, ..., r). The system V is called a disjoint Seifert hypersurface system for the boundary surface-link F. The 1-handle system h on F is a fusion **1-handle system** if F(h) has the $r - s \ge 1$ connected components, where the 1-handles h_i (j = 1, 2, ..., s) of h are called fusion 1-handles. Let F be a boundary surface-link in S^4 of surface-knot components F_i (i = 1, 2, ..., r), and V a disjoint Seifert hypersurface system for F consisting of V_i (i = 1, 2, ..., r) with $\partial V_i = F_i$ (i = 1, 2, ..., r). Let h be a fusion 1-handle system of fusion 1-handles h_i (j = 1, 2, ...,s) on F. Let D be a disk system of r disjoint disks $D_{i}(\subset F_{i})$ (i = 1, 2, ..., r), and B a system of disjoint 3-balls B_i (i = 1, 2, ..., r)2, ...,r) in S⁴ with $B_i \cap V_i = (\partial B_i) \cap V_i = D_i$ (i = 1, 2, ..., r). Since the 3-manifold V_iUB_i is cell-move equivalent to V_i, the surface-link F is canonically equivalent to the surfacelink $U_{i=1}^{r} \partial (V_{i} U B_{i})$. The 3-ball system B and trivial S²-link $L = \partial B$ are called a **local 3-ball system** and a **local S²-link** of the boundary surface-link F, respectively. By sliding the transverse disk system of h meeting V into B along VU B, the fusion 1-handle system h on F is considered as a fusion 1-handle system h^L on the local S²-link L, which is attached to the disk system $D' = cl(\partial B \setminus D)$, so that h^L does not meet V, but transversely meets the interior of B with a transverse disk system. This fusion 1-handle system h^L is called a localized fusion 1-handle system of h on F. The surface-link L(h^L) obtained from L by surgery along h^L is a ribbon S²-link. A fusion 1-handle h^L, of h^L is **trivial** if the core arc c^L_i of h^L_i is made disjoint from the interior of the 3-ball system B by a ∂-relative isotopy of c^L, keeping L fixed. Otherwise, h^L_i is **nontrivial**. A fusion 1-handle h in h is trivial or nontrivial according to whether the

corresponding fusion 1-handle h_j^L in h_j^L is trivial or nontrivial, respectively. The fusion 1-handle system h_j^L on L is **pairwise nontrivial** if every h_j^L in h_j^L is nontrivial and disjoint from the subsystem of B excluding two members attached by h_j^L . The pairwise nontrivial fusion 1-handle system h_j^L on L is deformable into a neighborhood of any arc system α of disjoint simple arcs α_j (j=1,2,...,s) in S^4 such that $\partial \alpha_j = \partial c_j^L$ (j=1,2,...,s) and $\alpha \cap B = \partial \alpha \cap \partial B = \partial \alpha$. This means that the pairwise nontrivial fusion 1-handle system h_j^L on the local S^2 -link L is determined regardless of how the disjoint Seifert hypersurface system V for the boundary surface-link V is chosen. A fusion 1-handle system V on V is pairwise nontrivial.

The following theorem is a main result of this paper, correcting an incorrect result, [3, Theorem 1.4]. Some counterexamples are given, [4].

Theorem 1.1. Let F be a boundary surface-link of $r \ge 2$ components in S^4 . If the surface-link F(h) obtained from F by surgery along a pairwise nontrivial fusion 1-handle system h is a ribbon surface-link, then the surface-link F is a ribbon surface link with h belonging to the 1-handle system of the ribbon surface-link F(h).

For a surface-knot F in S^4 , let $F \times [0,1]$ be a normal [0,1]-bundle over F in S^4 such that the natural homomorphism H_1 ($F \times 1;Z$) $\to H_1$ ($S^4 \setminus F \times 0;Z$) is the zero map. In other words, take $F \times [0,1]$ a boundary collar of a compact connected oriented 3-manifold V smoothly embedded in S^4 with $\partial V = F$, [2]. The surface-link $P(F) = \partial F \times [0,1] = F \times 0 \cup F \times 1$ in S^4 is called the *anti-parallel surface-link* of F, where by convention $F \times 0$ and $F \times 1$ are identified with F (i.e., the orientation reversed F) and F, respectively. The anti-parallel surface-link F (F) is a boundary surface-link, because F (F) is the boundary of F0 and F1 for a normal F1 in F2 in F3 the boundary of F3 in F4. The half partity of the following theorem is a direct consequence of Theorem 1.1.

Theorem 1.2. Let P(F) be the anti-parallel surfacelink of a non-ribbon surface knot F in S^4 , and P(F)(h) the surface-knot obtained from P(F) by surgery along a fusion 1-handle h. According to whether h is a trivial or nontrivial 1-handle, the surface-knot P(F)(h) is a trivial or non-ribbon surface-knot, respectively.

Theorem 1.2 positively answers Cochran's conjecture on non-ribbon ability of the S^2 -knot P(F;h) for a non-ribbon S^2 -knot F and any sufficiently complicated fusion1handle h, [1].

Proofs of Theorem 1.1 and 1.2

The proof of Theorem 1.1 is done as follows.

2.1: Proof of Theorem 1.1. If F(h) is a disconnected ribbon surface-link, then there is a pairwise nontrivial fusion 1-handle system h^+ on F extending h such that $F(h^+)$ is a ribbon surface-knot. Thus, assume that F(h) is a ribbon surface-knot. First, the proof of the case r=2 is given where h is a nontrivial fusion 1-handle on F. Let i=1 or 2. For the 3-manifold V_i with $\partial V_i = F_i$, let β_i be a 1-handle system on F_i embedded in V_i and disjoint from hand B such that $V_i' = \operatorname{cl}(V_i \setminus \beta_i)$ is a handlebody, [4]. Then the surface-link $F(\beta) = F_1(\beta_1) \cup F_2(\beta_2)$ for the 1-handle system $\beta = \beta_1 \cup \beta_2$ bounds the disjoint handlebody system $V' = V'_1 \cup V'_2$ and hence is a trivial surface-link in S^4 . The surface-knot $F(\beta)(h)$ is a ribbon surface-knot which is equivalent to the connected sum of the non-trivial ribbon S^2 -knot L(h) and the trivial surface-knots $F_i(\beta_i)(i=1,2)$ attaching along the disks D_i (i = 1,2). The ribbon S^2 -knot L(h) has a canonical SUPH system $W(Lh) = B^{(0)} \cup h$, where $B^{(0)} = B_1^{(0)} \cup B_2^{(0)}$ for a once-punctured 3-ball $B_i^{(0)}$ of the 3-ball B_i in the 3-ball system $B = B_1 \cup B_2$. Then the ribbon surface-knot $F(\beta)(h)$ has a SUPH system W = $W(Lh) \cup V'$ which is a disk sum of W(Lh) and V' pasting along the disk system $D = D_1 \cup D_2$. On the other hand, the surface-knot F(h) is a ribbon surface-knot and hence has a SUPH system W(Fh). If necessary, by replacing W(Fh)with a multi-punctured W(Fh), the union $W' = W(Fh) \cup \beta$ is a SUPH system for the surface-knot $F(\beta)(h)$. By replacing W and W with multi-punctured W and W, respectively, there is an orientation-preserving diffeomorphism f of S^4 sending W and W'. See Appendix of [9] for this meaning. In this paper, the following property is used.

(2.1.1) The diffeomorphism f of S4 is isotopically deformed so that the restriction of f to $F(\beta)(h)$ is the identity map.

By (2.1.1), assume that the restriction $f|F(\beta)(h)$ is the identity. Let D(h) be a transversal disk of the 1-handle h, and $D(\beta)$ a transversal disk system of the 1-handle

This means that $F = F_1 \cup F'$ is a ribbon surface-link with h belonging to the ribbon 1-handle system of the ribbon surface-knot F(h). This completes the proof of Theorem 1.1 under the assumption of (2.1.1).

(2.1.1) is proved as follows.

Proof of (2.1.1). Let $F(\beta)(h)^{\wedge}$ be the ribbon S^2 -knot obtained from $F(\beta)(h)$ by surgery along the O2-handle basis (D_L, D_L) on $F(\beta)(h)$, which is isotopic to the ribbon S²-knot L(h)taking h as a localized single nontrivial pairwise fusion 1-handle system on the trivial S²-link L, [7]. The image $f(F(\beta)(h)^{\hat{}})$ is a ribbon S²-knot obtained from the ribbon surface-knot $f(F(\beta)(h))$ by surgery along the O2-handle basis $(f(D_{L}), f(D_{L}))$, which is isotopic to the ribbon S²-knot f(L(h)). Any S²-knot K equivalent to L(h) is isotopic to L(h). In fact, K is written as a ribbon S²-knot L(h') for a fusion 1-handle h' on the trivial S²-link system L= ∂B U ∂B, with the same attaching part as h (since a trivial S²link is isotopically unique), and then the 1-handle h' is deformed into the 1-handle h by an isotopy keeping the attaching part fixed. This is because equivalent ribbon S²knots L(h) and L(h') are faithfully equivalent, [10]. Thus, the ribbon S²-knot f(L(h)) is isotopic to L(h), meaning that $f(F(\beta)(h)^{\hat{}})$ is isotopic to $F(\beta)(h)^{\hat{}}$. Then f is modified to have the property that the restriction of f to $F(\beta)(h)$ is the identity. Further, there is a modification of f such that the restriction of f to $F(\beta)(h)$ is the identity map by uniqueness of an O2-handle pair in the soft sense, [4]. This completes the proof of (2.1.1).

This completes the proof of Theorem 1.1.

The proof of Theorem 1.2 is done as follows.

2.2: Proof of Theorem 1.2. Assume that the fusion 1-handle h on the anti-parallel surface-link P(F) is nontrivial. If the surface-knot P(F)(h) is a ribbon surface-knot, then the boundary surface link P(F) is a ribbon surface-link by Theorem 1.1, so that F is a ribbon surface-knot, contradicting that F is a non-ribbon surface-knot.

Thus, P(F)(h) is a non-ribbon surface-knot. Assume that h is a trivial fusion 1-handle on $P(F)=F_0UF_1$ with $F_i=F\times i (i=0,1)$. Since P(F) is a boundary surface-link, there is a disconnected Seifert hypersurface $V_*=V_0UV_1$ for P(F)

with $\partial V_i = F_i(i=0,1)$ disjoint from the fusion 1-handle h except for the attaching part to P(F). By taking the original V_0 as V, it is possible to repace V_* with the union of $V_i = V \times i(i=0,1)$ such that h is disjoint from $V \times [0,1]$ except the attaching part to P(F). Let β be a 1-handle system on F embedded in V such that $V' = cl(V \setminus \beta)$ is a handlebody, [7].

Let $\beta_* = \beta_0 \mathbf{U} \, \beta_1$, $\beta_i = \beta \times i$, and $V'_* = V'_0 \mathbf{U} \, V'_1$, $V'_i = V' \times i$. Then $\partial V'_i = F_i(\beta_i)(i=0,1)$ and the union $W = h \mathbf{U} \, V'_*$ is a handlebody with $\partial W = P(F)(h)(\beta_*)$. Let D_* be a transverse disk system of the 1-handle system β_* . It will be shown that there is a proper disk system D'_* in the handlebody W such that the pair $(D_* \times I, D'_* \times I)$ is an O2-handle pair system on $P(F)(h)(\beta_*)$. Let $h_0 = d \times [0,1]$ in $F \times [0,1]$ for a disk d in F, which is assumed to be a 1-handle on P(F) with the same attaching part as h. For any two spin loop bases (a,a'), (b,b') of a trivial surface-knot T in S^4 , there is an orientation- preserving diffeomorphism of (S^4,T) sending (a,a') to (b,b'), [9], [11].

Further, for any O2-handle bases $(D\times I, D'\times I)$ and $(E\times I, E'\times I)$ on T, there is an orientation preserving diffeomorphism of (S^4,T) sending $(D\times I,D'\times I)$ to $(E\times I,E'\times I)$, [4]. By using these results, there is an orientation-preserving diffeomorphism f of S⁴ sending the handlebody W to W'=h₀UV'_{*} such that the restriction of f to V', is the identity map by moving h UV'_1 into $h_0UV'_1$ and keeping V'_0 fixed. Then $\partial W' = P(F)$ $(h_0)(\beta_*)$. By using the product $V'\times[0,1]$ in S^4 , a proper disk system E', in W' is constructed such that (f(D,)×I, $E'_* \times I$) is an O2-handle pair system on $P(F)(h_0)(\beta_*)$. For the preimage $D'_* = f^{-1}(E'_*)$ of E'_* by f, the pair $(D_* \times I, D'_* \times I)$ is an O2-handle pair system on the surface-link P(F)(h) (β_{*}) as desired. Note that the surface-knot G obtained from $P(F)(h)(\beta^*)$ by surgery along $(D_* \times I, D'_* \times I)$ is equivalent to the surface-knot obtained from $P(F)(h)(\beta_*)$ by surgery along the 2-handle system D_{*}×I, [9]. Hence the surfaceknot G is a trivial surface-knot and equivalent to P(F)(h), [4]. This completes the proof of Theorem 1.2.

Acknowledgements

This work was partly supported by JSPS KAKENHI Grant Number JP21H00978 and MEXT Promotion of Distinctive Joint Research Center 5 Program JPMXP0723833165 and Osaka Metropolitan University Strategic Research Promotion Project (Development of International Research Hubs).

References

- 1. Kawauchi., A. (2015). A chord diagram of a ribbon surface-link, J Knot Theory Ramifications 24, 1540002 (24).
- Kawauchi., A., Shibuya., T., Suzuki, S. (1983). Descriptions on surfaces in four-space, II: Singularities and cross-sectional links, Math Sem Notes Kobe Univ 11, 31-69.
- 3. Kawauchi, A. (2025). Revised note on surface-link of trivial components. arXiv:2503.05151
- 4. Kawauchi, A. (2025). Ribbonness of a stable-ribbon surface-link, II: General case. (MDPI) Mathematics 13 (3), 402 (1-11).
- 5. Gluck, H. (1962). The embedding of two-spheres in the four-sphere, Trans Amer Math Soc 104: 308-333.

- Cochran, T. (1983). Ribbon knots in S4, J London Math Soc (2) 28, 563-576.
- 7. Hosokawa, F. and Kawauchi, A. (1979). Proposals for unknotted surfaces in four-space, Osaka J Math 16, 233-248.
- 8. Kawauchi, A. (2025). Free ribbon lemma for surface-link. arXiv:2412.09281
- 9. Kawauchi, A. (2021). Ribbonness of a stable-ribbon surface-link, I. A stably trivial surface-link, Topology and its Applications 301, 107522 (16).
- 10. Kawauchi, A. (2018). Faithful equivalence of equivalent ribbon surface links, J Knot Theory Ramifications 11, 1843003 (23).
- 11. Hirose, S. (2002). On diffeomorphisms over surfaces trivially embedded in the 4-sphere, Algebraic and Geometric Topology 2, 791-824.

Copyright: ©2025 Akio Kawauchi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.