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Abstract

It is shown that a boundary surface-link in the 4-sphere is a ribbon surface link if the surface-link obtained from it by surgery

along a pairwise nontrivial fusion 1-handle system is a ribbon surface-link. As a corollary, the surface knot obtained from the

anti-parallel surface-link of a non-ribbon surface-knot by surgery along a nontrivial fusion 1-handle is a non-ribbon surface-

knot. This result answers Cochran’s conjecture on non-ribbon sphere-knots in the affirmative.
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Introduction

A surface-link is a closed (possibly disconnected) closed
oriented surface F smoothly embedded in the 4-sphere
S* When F is connected, F is called a surface-knot. The
components F, (i =1, 2, ..., r) of F are 2-spheres, then F
is called a sphere-link or an S-link of r components.
A l-handle system on a surface-link F is a 1-handle
system h of disjoint 1-handles hj G=1,2,..) onF
smoothly embedded in S* Let F(h) be the surface-link
obtained from F by surgery along a 1-handle system h.
A ribbon surface-link is the surface-link O(h) obtained
from a trivial S2-link O by surgery along a 1-handle
system h, [1], [2]. A surface-link F is a boundary surface-
link if there is a system V of disjoint compact connected
oriented 3-manifolds V, (=1, 2, ..., r) smoothly embedded
in S* with oV.=F. (1=1,2,..,1). The system V is called
a disjoint Seifert hypersurface system for the boundary
surface-link F. The 1-handle system h on F is a fusion
1-handle system if F(h) has the r —s (>1) connected
components, where the 1-handles hj G=1,2,...,s)of hare
called fusion 1-handles. Let F be a boundary surface-link
in S* of surface-knot components F.(i=1,2,..r1),and V
a disjoint Seifert hypersurface system for F consisting of

V.i=1,2,..,r)withoV,=F (i=1,2,..,1). Leth be a
fusion 1-handle system of fusion 1-handles hj Gg=12,..,
s) on F. Let D be a disk system of r disjoint disks D, (= F))
(i=1,2,..,1),and B a system of disjoint 3-balls B, (i =1,
2,..r)inS*withB,NV,=(@B)NV =D, (i=1,2,..71).
Since the 3-manifold VUB,; is cell-move equivalent to V,,
the surface-link F is canonically equivalent to the surface-
link U*_ 0 (V,UB,). The 3-ball system B and trivial S*-link
L = 0B are called a local 3-ball system and a local S*-link
of the boundary surface-link F, respectively. By sliding the
transverse disk system of h meeting V into B along VU
B, the fusion 1-handle system h on F is considered as a
fusion 1-handle system h* on the local S*-link L, which is
attached to the disk system D’ = cl(6B \ D), so that h* does
not meet V, but transversely meets the interior of B with a
transverse disk system. This fusion 1-handle system h* is
called a localized fusion 1-handle system of h on F. The
surface-link L(h") obtained from L by surgery along h" is
a ribbon S?-link. A fusion 1-handle th of h' is trivial if
the core arc ch of th is made disjoint from the interior of
the 3-ball system B by a O-relative isotopy of ch keeping
L fixed. Otherwise, th is nontrivial. A fusion 1-handle
hj in h is trivial or nontrivial according to whether the
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corresponding fusion 1-handle th in ht is trivial or
nontrivial, respectively. The fusion 1-handle system h' on
L is pairwise nontrivial if every th in h" is nontrivial and
disjoint from the subsystem of B excluding two members
attached by th. The pairwise nontrivial fusion 1-handle
system h*on L is deformable into a neighborhood of any
arc system o of disjoint simple arcs o, G=1,2,..,s)inS*
such that aaj = 6ch G=1,2,..,s)and a N B =00NIB =
da. This means that the pairwise nontrivial fusion 1-handle
system h" on the local S*-link L is determined regardless
of how the disjoint Seifert hypersurface system V for
the boundary surface-link F is chosen. A fusion 1-handle
system h on F is pairwise nontrivial if h" on L is pairwise
nontrivial.

The following theorem is a main result of this paper,
correcting an incorrect result, [3, Theorem 1.4]. Some

counterexamples are given, [4].

Theorem 1.1. Let F be a boundary surface-link of #(> 2)
components in S*. If the surface-link F(%) obtained from
F by surgery along a pairwise nontrivial fusion 1-handle
system /4 is a ribbon surface-link, then the surface-link F
is a ribbon surface link with 4 belonging to the 1-handle
system of the ribbon surface-link F(%).

For a surface-knot F in $*, let F x [0,1] be a normal
[0,1]-bundle over F in S* such that the natural
homomorphism H (F x 1;Z) — H, ($*\ F x 0;Z) is the
zero map. In other words, take /' % [0,1] a boundary collar
of a compact connected oriented 3-manifold ¥ smoothly
embedded in $*with 0V = F, [2]. The surface-link P(F) =0
(Fx[0,1]))=F x0 U F x 1 in S*is called the anti-parallel
surface-link of F, where by convention F X0 and F X1 are
identified with —F (i.e., the orientation reversed F) and
F, respectively. The anti-parallel surface-link P (F) is a
boundary surface-link, because P (F) is the boundary of
xQUV x1 for a normal [0, 1]-bundle V' x [0,1] of a compact
connected oriented 3-manifold V' with 0V = F smoothly
embedded in §*. The half parti of the following theorem is
a direct consequence of Theorem 1.1.

Theorem 1.2. Let P(F) be the anti-parallel surface-
link of a non-ribbon surface knot F in S$*, and P(F)(h)
the surface-knot obtained from P(F) by surgery along a
fusion 1-handle /. According to whether 4 is a trivial or
nontrivial 1-handle, the surface-knot P(F)(%) is a trivial or

non-ribbon surface-knot, respectively.

Theorem 1.2 positively answers Cochran’s conjecture on
non-ribbon ability of the S?-knot P(F’;i) for a non-ribbon
S2-knot F and any sufficiently complicated fusionlhandle
h, [1].

Proofs of Theorem 1.1 and 1.2

The proof of Theorem 1.1 is done as follows.

2.1: Proof of Theorem 1.1. If F () is a disconnected
ribbon surface-link, then there is a pairwise nontrivial
fusion 1-handle system /4" on F extending / such that
F(h") is a ribbon surface-knot. Thus, assume that F(/) is
a ribbon surface-knot. First, the proof of the case =2 is
given where /4 is a nontrivial fusion 1-handle on F. Let
i=1 or 2. For the 3-manifold V, with oV, =F, let 8 be a
1-handle system on F,embedded in ¥ and disjoint from A
and B such thatl) = cl(V; \ /3;) is a handlebody, [4]. Then
the surface-link F(f) = F, (B,) UF,(f,) for the 1-handle
system = 8 UB, bounds the disjoint handlebody system
V' = Vl’ U V2’ and hence is a trivial surface-link in S*. The
surface-knot F(fS)(h) is a ribbon surface-knot which is
equivalent to the connected sum of the non-trivial ribbon
S?-knot L(h) and the trivial surface-knots F, (£)(i = 1,2)
attaching along the disks D, (i = 1,2). The ribbon $*-knot L
(h) has a canonical SUPH system W(Lh) = BOUh, where
B® = B B{ for a once-punctured 3-ball BZ-(O) of
the 3-ball B, in the 3-ball system B = B U B,. Then the
ribbon surface-knot F(S)(#) has a SUPH system W =
W(Lh) U V "which is a disk sum of W (Lh) and V' 'pasting
along the disk system D = D UD,. On the other hand, the
surface-knot F' (h) is a ribbon surface-knot and hence has
a SUPH system W (Fh). If necessary, by replacing W(Fh)
with a multi-punctured W(Fh), the union W'= W(Fh)Up is
a SUPH system for the surface-knot F(f)(%). By replacing
W and W 'with multi-punctured W and W ', respectively,
there is an orientation-preserving diffeomorphism f of $*
sending W and W '. See Appendix of [9] for this meaning.
In this paper, the following property is used.

(2.1.1) The diffeomorphism f of S4 is isotopically deformed
so that the restriction of f to F(B)(h) is the identity map.

By (2.1.1), assume that the restriction f[F(f)(h) is the
identity. Let D(h) be a transversal disk of the 1-handle
h, and D(p) a transversal disk system of the 1-handle
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This means that ' = F UF 'is a ribbon surface-link with
h belonging to the ribbon 1-handle system of the ribbon
surface-knot ' (k). This completes the proof of Theorem
1.1 under the assumption of (2.1.1).

(2.1.1) is proved as follows.

Proofof (2.1.1). Let F(B)(h)" be the ribbon S*-knot obtained
from F(B)(h) by surgery along the O2-handle basis (D,,D,,)
on F(B)(h), which is isotopic to the ribbon S2-knot L(h)
taking h as a localized single nontrivial pairwise fusion
1-handle system on the trivial S>-link L, [7]. The image
f(F(B)(h)") is a ribbon S?-knot obtained from the ribbon
surface-knot f(F(B)(h)) by surgery along the O2-handle
basis (f(D,),f(D, )), which is isotopic to the ribbon S*-knot
f(L(h)). Any S*-knot K equivalent to L(h) is isotopic to
L(h). In fact, K is written as a ribbon S*-knot L(h') for a
fusion 1-handle h’ on the trivial S*-link system L= 6B U
0B, with the same attaching part as h (since a trivial S*-
link is isotopically unique), and then the 1-handle h’ is
deformed into the 1-handle h by an isotopy keeping the
attaching part fixed. This is because equivalent ribbon S2-
knots L(h) and L(h') are faithfully equivalent, [10]. Thus,
the ribbon S-knot f(L(h)) is isotopic to L(h), meaning that
f(F(B)(h)") is isotopic to F(B)(h)" Then f is modified to
have the property that the restriction of f to F(B)(h)"is the
identity. Further, there is a modification of f such that the
restriction of f'to F(B)(h) is the identity map by uniqueness
of an O2-handle pair in the soft sense, [4]. This completes
the proof of (2.1.1).

This completes the proof of Theorem 1.1.

The proof of Theorem 1.2 is done as follows.

2.2: Proof of Theorem 1.2. Assume that the fusion
I-handle h on the anti-parallel surface-link P(F) is
nontrivial. If the surface-knot P(F)(h) is a ribbon surface-
knot, then the boundary surface link P(F) is a ribbon
surface-link by Theorem 1.1, so that F is a ribbon surface-

knot, contradicting that F is a non-ribbon surface-knot.

Thus, P(F)(h) is a non-ribbon surface-knot. Assume
that h is a trivial fusion 1-handle on P(F)=F UF with
F.=Fxi(i=0,1). Since P(F) is a boundary surface-link, there
is a disconnected Seifert hypersurface V.=V UV for P(F)

with OV=F (i= 0,1) disjoint from the fusion I-handle h
except for the attaching part to P(F). By taking the original
V, as V, it is possible to repace V, with the union of
V.=Vxi(i=0,1) such that h is disjoint from Vx[0,1] except
the attaching part to P(F). Let B be a 1-handle system on F
embedded in V such that V'=cl(V \B) is a handlebody, [7].

Let B.=B,YB,, B=P>i, and V'.=V' UV’ V'=V'< i Then
oV'=F(B,)(i=0,1) and the union W=hU V", is a handlebody
with OW=P(F)(h)(B,). Let D, be a transverse disk system
of the 1-handle system .. It will be shown that there is a
proper disk system D’,in the handlebody W such that the
pair (D,xI,D’,xI) is an O2-handle pair system on P(F)(h)
(B.)- Let h;= d=[0,1] in Fx[0,1] for a disk d in F, which is
assumed to be a 1-handle on P(F) with the same attaching
part as h. For any two spin loop bases (a,a’), (b,b") of a trivial
surface-knot T in S*, there is an orientation- preserving
diffeomorphism of (S*,T) sending (a,a’) to (b,b"), [9], [11].

Further, for any O2-handle bases (DxI,D"xI) and (Ex I, E'xI)
on T, there is an orientation preserving diffeomorphism of
(S, T) sending (D=1, D'xI) to (ExI, E'xI), [4]. By using these
results, there is an orientation-preserving diffeomorphism
f of S* sending the handlebody W to W'=h U V', such that
the restriction of f to V', is the identity map by moving h
UV’ into h UV’ and keeping V', fixed. Then OW'= P(F)
(h,)(B.). By using the product V'x[0,1] in S% a proper
disk system E’, in W' is constructed such that (f(D,)xI,
E’.xI) is an O2-handle pair system on P(F)(h )(B,). For the
preimage D', = f I(E',) of E', by f, the pair (D,xI, D’,xI)
is an O2-handle pair system on the surface-link P(F)(h)
(B.) as desired. Note that the surface-knot G obtained from
P(F)(h)(B*) by surgery along (D,xI, D', x]) is equivalent
to the surface-knot obtained from P(F)(h)(B,) by surgery
along the 2-handle system D,xI, [9]. Hence the surface-
knot G is a trivial surface-knot and equivalent to P(F)(h),
[4]. This completes the proof of Theorem 1.2.
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