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Abstract
Background: Long non-coding RNAs (lncRNAs) are crucial factors affecting the occur-rence, progression and prognosis of 
gastric cancer. Accumulation of disulfide bonds to excessive levels in cells expressing high SLC7A11 triggers disulfidptosis, 
which functions as a regulated form of cellular death. Research have demonstrated that upregulated SLC7A11 is common in 
human cancers, but the effect of disulfidptosis on gastric cancer remains unclear. Identifying long non-coding RNAs associated 
with disulfidptosis (drlncRNAs) and establishing a prognostic risk profile holds considerable importance for advancing 
gastric cancer research and treatment. Methods: Clinical records and transcriptomic datasets from individuals with gastric 
cancer were acquired from The Cancer Genome Atlas (TCGA) repository. A 3 drlncRNAs risk model was built by three 
common regression analysis methods. Then we used ROC curves, independent prognostic analysis and additional statistical 
approaches to assess the precision of the model. This investi-gation additionally encompassed GO and KEGG analysis, immune 
cell infiltration evaluation, and pharmacological sensitivity predictions. To further investigate immunotherapy response dis-
parities between patient cohorts with elevated and reduced risk scores, analyses of TMB, MSI, and TIDE were implemented. 
Results: We constructed a unique model composed of 3 drlncRNAs (AC107021.2, AC016394.2 and AC129507.1). 

Independent prognostic capability for gastric carci-noma patients was validated through both single-variable and 
multivariable Cox regression analyses. GO and KEGG pathway assessments revealed predominant enrichment within the el-
evated-risk cohort, particularly in pathways involving sulfur compound interactions, traditional WNT signaling mechanisms, 
cellular-substrate adhesion junctions, and cAMP signaling cascades, among others. TME evaluation demonstrated elevated 
ImmuneScores, StromalScores, and ES-TIMATEScores within the high-risk patient population. Concurrently, this elevated-risk 
cohort exhibited enhanced immune cell infiltration patterns, whereas the reduced-risk group displayed superior expression 
of ICPs. Additional investigations revealed that patients categorized in the reduced-risk classification possessed greater 
tumor mutational burden, increased microsatellite instability-high proportions, and diminished Tumor Immune Dysfunction 
and Exclusion scores compared to their high-risk counterparts. Pharmacological sensitivity assessments confirmed superior 
efficacy of several therapeutic agents, including gemcitabine and veliparib (ABT.888), in patients with lower risk classifications. 
Conclusively, our established risk stratification system demonstrates independent prognostic predictive capacity while offering 
personalized clinical intervention guidance for individuals diagnosed with gastric carcinoma.
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1. Introduction
Globally, gastric carcinoma ranks among the most prevalent 
malignancies, with an-nual worldwide incidence approaching 
1 million new diagnoses and mortality exceeding 720,000 
individuals annually[1]. Epidemiological data from 2020 
documented 1.1 million newly identified cases and approximately 
770,000 fatalities attributed to this gastrointes-tinal malignancy 
worldwide. Projections suggest a substantial escalation in 
these figures, with epidemiological forecasts anticipating 
approximately 1.8 million additional diagno-ses and 1.3 million 
gastric cancer-related mortalities by 2040.[2]. Early gastric 
cancer typ-ically presents with subtle and nonspecific symptoms, 
resulting in more than 60% of pa-tients being diagnosed after 
metastasis[3]. This late diagnosis contributes to poor progno-sis, 
with only 5% of patients with metastatic GC surviving beyond 
five years[4,5]. 

Fortunately, therapeutic advances in immunological interventions, 
particularly im-mune checkpoint blockade agents (ICBs), have 
offered promising approaches for manag-ing progressive and 
relapsed gastric malignancies[6]. Nevertheless, a considerable 
per-centage (40-60%) of individuals receiving immune 
checkpoint-targeted therapies exhibit therapeutic resistance[7]. 
Consequently, identifying dependable prognostic indicators to 
anticipate survival outcomes in gastric adenocarcinoma (STAD) 
patients, recognizing treatment-responsive populations and 
effective pharmaceutical agents holds paramount importance for 
ultimately enhancing longevity among individuals with gastric 
carcino-ma.

Disulfidptosis is a kind of original regulated cell death 
that is different from ferropto-sis and cuproptosis. Initial 
characterization by Liu and colleagues established disul-fidptosis 
as a distinct cellular death mechanism triggered by disulfide 
bond overaccumu-lation within cells expressing elevated 
levels of SLC7A11. Here we focus on drlncRNAs related to 24 
DRGs (disulfidptosis-related genes) mentioned in the literature 
including GYS1, NDUFS1, OXSM, LRPPRC, NDUFA11, 
NUBPL, NCKAP1, RPN1, SLC3A2, SLC7A11, INF2, CD2AP, 
ACTN4, PDLIM1, IQGAP1, DSTN, CAPZB, ACTB, MYL6, 
MYH9, MYH10, TLN1, FLNA, FLNB. Among these 24 DRGs, 
the last 14 are genes that encode actin-related proteins and 
upregulate following the glucose starvation[8]. Given that up-
regulated SLC7A11 is common in human cancers, the discovery 
of disulfidptosis expands the framework of programmed cell 
death and may lead to new treatment and therapeutic targets for 
multiple cancers [9-11].

Expanding scientific literature demonstrates that long non-
coding RNAs functioning as oncogenic elements can enhance 
proliferative capacity, invasive potential, and meta-static 
dissemination in gastric carcinoma cells, while simultaneously 
serving as prospec-tive molecular indicators for survival 
prognostication and personalized therapeutic deci-sion-
making in gastric adenocarcinoma patients.[12-15]. However, 
disulfidptosis-related lncRNA in STAD have barely been 
reported so far.

This investigation endeavors to establish an innovative lncRNA 
profile associated with disulfidptosis for prognostic assessment 
and immune microenvironment character-ization in gastric 
adenocarcinoma. We anticipate that our findings will contribute 
signifi-cant insights toward identifying efficacious therapeutic 
compounds and selecting patients most likely to benefit from 
immunological interventions.

2. Materials and methods 
2.1. Date source
The methodological framework of this investigation is 

illustrated in Figure-1. Tran-scriptomic datasets comprising 

448 gastric adenocarcinoma cases (412 neoplastic speci-mens 

and 36 non-neoplastic tissues) along with clinical information 

from 443 patients were acquired from The Cancer Genome Atlas 

(TCGA) repository (https://tcga-data.nci.nih.gov/tcga/). For 

differentiation between messenger RNAs and long non-coding 

RNAs, we utilized Strawberry Perl computational platform 

(version 5.30.0-64bit) obtained from https://strawberryperl.

com/. 24 DRGs were collected from the literature by Liu et al. 

mentioned before and Pearson correlation analysis was then 

per-formed to filter out drlncRNAs. In order to minimize errors, 

patients with missing surviv-al information were excluded and 

407 STAD patients remained eventually. Simple nucle-otide 

variation (SNV) profiles from 434 gastric adenocarcinoma 

subjects were additionally extracted from The Cancer Genome 

Atlas repository and subsequently employed for tu-mor 

mutational burden (TMB) quantification. The data of STAD 

microsatellite status were obtained from TCIA website (https://

www.tcia.at/ ). Tumor Immune Dysfunction and Exclusion 

(TIDE) metrics were procured from the Harvard Dana-Farber 

Cancer Institute online platform (http://tide.dfci.harvard.edu).
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2.2. The development and verification of the arlncRNAs 
signature
The comprehensive cohort encompassing 407 gastric 
adenocarcinoma cases under-went random allocation into 
training and validation datasets at an equal 1:1 distribution ratio. 
Then, statistical analysis was implemented to substantiate the 
classification robust-ness. We first developed the drlncRNA 
prognostic model in the train set. Application of univariate Cox 
proportional hazards regression identified 29 disulfidptosis-
associated long non-coding RNAs exhibiting substantial 
association with overall survival (OS) (p<0.05). To mitigate 
potential overfitting issues, we subsequently implemented 
least ab-solute shrinkage and selection operator (LASSO)-
penalized Cox methodology with 10-fold cross-validation under 
identical significance thresholds (p<0.05), yielding 7 candidate 
transcripts. Multivariable Cox regression analysis further 
refined this selection, culminat-ing in a prognostic algorithm 
incorporating 3 disulfidptosis-related long non-coding RNAs. 
Model performance underwent verification utilizing both the 
validation cohort and the aggregate patient population. Risk 
stratification scores were derived according to the following 
mathematical expression:

Risk score= lncRNA1exp × coef1 + lncRNA2exp × coef2 +… + 
lncRNAnexp × coefn.

lncRNAnexp: expression of lncRNAn 

coefn: risk coefficient of lncRNAn based on the model

Based on the median computed risk value as the threshold 

criterion, all gastric ade-nocarcinoma subjects were stratified 
into elevated and reduced disulfidptosis score cate-gories. 
The prognostic algorithm’s precision was evaluated through 
independent survival analyses to determine whether this 
disulfidptosis-associated long non-coding RNA pro-file 
could predict clinical outcomes in gastric carcinoma patients 
autonomously from de-mographic variables (age and gender) 
and tumor characteristics (histological grade and pathological 
stage). Subsequently, we used R packages “survival”, 
“survminer” and “tim-eROC” to plot ROC curves of the 
train set, test set, entire set and different clinicopatholog-ical 
characteristics respectively, and corresponding AUC (area 
under curve) value were also calculated. To further corroborate 
our prognostic algorithm’s efficacy, survival anal-yses 
employing Kaplan-Meier methodology were conducted across 
various clinicopatho-logical parameters including patient age, 
histological differentiation, disease progression stage, primary 
tumor dimensions (T classification), regional lymphatic 
involvement (N classification), and remote metastatic status (M 
classification).

2.3. Independent prognostic analysis and ROC curve 
plotting
Independent prognostic analysis was utilized to corroborate that 
our model can pre-dict the outcomes of patients independent 
of age, gender, stage and grade. The predictive precision 
of the prognostic model was assessed through ROC curves 
and AUC (area un-der curve) values. (R packages “limma”, 

  

        
        Figure 1. The methodological framework of the present study.
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“scatterplot3d”, “survival”, “survminer” and “timeROC” were 
used in this progress).

2.4. Nomagram and Calibration
Considering clinicopathological factors and risk score, a 
predictive nomogram which was designed to predict 1-, 3-, and 
5-year OS was created utilizing R packages “survival”, “regplot” 
and “rms”. In the meantime, calibration curves for one-year, 
three-year, and five-year survival projections were generated to 
assess the predictive accuracy of the nomogram.

2.5. Gene set enrichment analysis

The Gene Ontology repository categorizes genetic functions into 
three distinct classi-fications: biological process (BP), cellular 
component (CC), and molecular function (MF). Utilizing the 
“clusterProfiler” R computational package, we performed Gene 
Ontology and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses to elu-cidate potentially 
enriched functional categories and signaling cascades, with 
subsequent visualization implemented through “GOplot” and 
“ggplot2” R visualization libraries.

2.6. Investigation of TME, immune infiltration and 
immune checkpoints

Based on the result of GO and KEGG, we conducted immune-
related analyses. ES-TIMATE algorithm is usually utilized 
to figure out immune, stromal, and comprehensive scores 
of TME[16]. The ESTIMATE algorithm was implemented 
through ‘limma’ and ‘ggpubr’ R packages to investigate 
potential associations between risk stratification scores and 
tumor microenvironment characteristics. Differential infiltration 
patterns of specific immune cellular subsets between elevated 
and reduced disulfidptosis score groups un-derwent examination 
via seven distinct analytical platforms: XCELL, TIMER, 
QUAN-TISEQ, MCPCOUNTER, EPIC, CIBERSORT, and 
CIBERSORT-ABS, with results depicted through bubble plot 
visualization. Multiple R packages including “limma”, “scales”, 
“ggplot2”, “ggtext”, “reshape2”, “tidyverse”, and “ggpubr” 
facilitated this analytical process. Subsequently, quantitative 
assessment of 29 immune cell populations and functional 
pa-rameters across 448 gastric adenocarcinoma specimens 
was performed utilizing sin-gle-sample gene set enrichment 
methodology (ssGSEA) through “GSVA”, “limma”, and 
“GSEABase” R packages, with resultant data visualized via 
dual boxplot representations using “limma”, “ggpubr”, and 
“reshape2” software packages. Finally, we conducted im-mune 
checkpoint analysis to explore differentially expressed immune 
checkpoints be-tween high and low disulfidptosis score group.

2.7. TMB, MSI and TIDE

Initially, simple nucleotide variation profiles from 434 gastric 
adenocarcinoma pa-tients were acquired from TCGA repository, 
with subsequent tumor mutational burden quantification 
executed through Strawberry Perl computational platform. 
Mutational landscape visualization via waterfall diagrams 
depicting the 15 most frequently altered genes in elevated 
versus reduced risk cohorts was generated using the “maftools” 
package. Survival analysis curves stratifying patients into four 
distinct categories (“elevated TMB with high risk”, “elevated 
TMB with low risk”, “reduced TMB with high risk”, and “re-
duced TMB with low risk”) were constructed utilizing “survival” 
and “survminer” R li-braries. Additionally, based on extracted 
gastric adenocarcinoma microsatellite stability data, graphical 
representations including bar and box plots were developed to 
elucidate associations between microsatellite instability status 
and risk classification scores. Ulti-mately, comparative analysis 
of Tumor Immune Dysfunction and Exclusion metrics be-
tween patient populations with differential disulfidptosis score 
classifications was per-formed.

2.8. Drug sensitivity analysis

Inhibitory concentration-50 (IC50) measurements for diverse 
therapeutic agents were determined and juxtaposed between 
elevated and reduced disulfidptosis score patient cohorts through 
implementation of the “pRRophetic” R computational package, 
with re-sultant comparative analyses displayed as boxplots 
representations.

3. Results

3.1. Data source and processing

Using Strawberry Perl software, we processed the TCGA 
transcriptome data and gained the expression data of 19938 
mRNAs and 16876 lncRNAs. By combining the mRNAs 
expression profile with 24 disulfidptosis-related genes, we 
obtained the expres-sion data of 24 DRGs. Then, based on the 
criteria of |Pearson R|>0.4 and p < 0.001, Pear-son correlation 
analysis between 16876 lncRNAs and 24 DRGs was conducted 
and 367 drlncRNAs were finally identified (Figure 2A).

3.2. Development and verification of the drlncRNA 
predictive algorithm

By combining 367 drlncRNAs expression data with 407 GC 
patients’ clinical infor-mation, we acquired the drlncRNAs 
expression data profile and survival data for 407 samples, 
which was used for risk model building. We first implemented 
univariate cox regression analysis and preliminary screening out
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29 drlncRNAs (Figure 2B, p<0.05). Subsequently, LASSO-

penalized Cox analysis was implemented to mitigate model 

over-fitting concerns and 7 drlncRNAs significantly related to 

overall survival (OS) were ob-tained (Figure 2C, D, p<0.05). 

Eventually, the drlncRNA risk signature comprising 3 lncRNAs 

(AC107021.2, AC016394.2 and AC129507.1) and corresponding 

risk coefficient was acquired (Figure 2E, p<0.05). In the 

meantime, the relationship between 24 DRGs and 3 drlncRNAs 

is presented in Figure 2F. According to the previous calculation 

formula, risk score = AC107021.2exp × 0.66000986856416 + 

AC016394.2exp × -0.435804339506525 + AC129507.1exp × 

0.636605050383588.

Figure 2. Characterization of drlncRNAs in gastric carcinoma 

and establishment of a risk signature. (A) Identification of 367 

disulfidptosis-related long non-coding RNA tran-scripts within 

gastric adenocarcinoma specimens. (B) Forest plot visualization 

represent-ing univariate Cox proportional hazards regression 

outcomes. (C, D) Application of LASSO regression to the 30 

overall survival-associated transcripts determined through 

univariate Cox regression methodology. (E) Prognostic signature 

predicated upon disul-fidptosis-related elements was established 

through multivariable Cox regression analytic approaches. 

(F) Associative patterns between the prognostic model and 

disulfidpto-sis-related gene.

A total of 407 STAD samples were then allocated into two 

groups randomly at a 1:1 ratio. The dataset distribution consisted 

of 204 specimens allocated to the training cohort and 203 cases 

assigned to the validation group. Based on the median risk 

score as cutoff value, patients were divided into high and low 

risk group. According to the risk score and survival status of 

train set patients manifested in Figure 3A, B, we can conclude 

that the mortality of patients was positively correlated with risk 

score. Obviously, the risk heatmap of 3 drlncRNAs constructed 

the model (Figure 3C) showed that the upregulated AC107021.2 

and AC129507.1 were significantly associated with higher 

disulfidptosis score, while AC016394.2 was upregulated in the 

low disulfidptosis score patients. The Kaplan–Meier curve of 

train set (Figure 3D, p<0.001) indicated that the survival time of 

patients in the high- risk group were notably lower than that in 

the low- risk group, which was consistent with our expectations. 

To demonstrate the predictability of the drlncRNA model, 

we conducted the same analysis in the test set and whole set. 

Findings derived from both the validation cohort (Figure 3E-H) 

and the aggregate patient population (Figure 3I-L) demonstrated 

concordance with results observed in TCGA training dataset.

Independent prognostic evaluation demonstrated that the 3 

drlncRNAs signature constituted a robust survival prediction 

tool, functioning autonomously from demo-graphic and clinical 

parameters including patient age and disease stage (Figure 3M, 

N). Subsequently, ROC curve analysis yielded area under curve 

measurements within the training population (1-year AUC = 

0.741, 3-year AUC = 0.654, and 5-year AUC = 0.781; Figure 

3O), validation population (1-year AUC = 0.638, 3-year AUC = 

0.640, and 5-year AUC = 0.707; Figure 3P), and comprehensive 

cohort (1-year AUC = 0.692, 3-year AUC = 0.646, and 

5-year AUC = 0.723; Figure 3Q). Area under curve values 

for receiver operating characteristic analyses across various 

clinicopathological features were additionally cal-culated, and 

the ROC curve predicated upon our risk model showed the 

greatest AUC value (Figure 3R), which illustrated that our risk 

model as a prognosis predictor was con-siderably accurate.
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Figure 3. Prognostic assessment of risk stratification algorithm 
across training, vali-dation, and comprehensive cohorts. (A-D) 
Comparative analysis of risk distribution, sur-vival outcomes, 
expression profiles, and prognostic differences between elevated 
and re-duced disulfidptosis score categories within the training 
dataset. (E-H, I-L) Parallel ana-lytical evaluation conducted 
in validation cohort and aggregate patient population. (M) 
Forest plot visualization depicting univariate Cox proportional 
hazards regression of di-verse clinicopathological variables. 
(N) Multivariable Cox regression modeling results. (O-Q) 
ROC curves representing 1-year, 3-year, and 5-year predictive 
performance in training dataset, validation cohort, and 
comprehensive patient population. (R) ROC curves comparing 
drlncRNA models with different clinical features.

To further substantiate the predictive reliability of our 
algorithm, Kaplan-Meier sur-vival analyses were generated 
comparing patient outcomes between elevated and reduced risk 
classifications across various clinicopathological parameters 
including patient age, histological differentiation grade, disease 
progression stage, primary tumor extent (T clas-sification), 
nodal involvement status (N classification), and metastatic 

disease presence (M classification). We can recognize that our 
prognostic signature can accurately prognos-ticate the survival 
of patients independent of clinical variables (Figure 4). For 
patients in M1 stage, there was no significant difference in 
survival between our high and low risk groups, which may be 
due to the lack of sufficient samples.

Figure 4. Kaplan-Meier survial analysis for different 
clinicopathological characteris-tics
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3.3. Nomogram and calibration curves
To facilitate survival duration estimation utilizing our 
disulfidptosis-associated long non-coding RNA profile, 
we constructed a nomographic prediction model capable 
of projecting one-year, three-year, and five-year survival 
probabilities (Figure 5A). Concur-rently, calibration plot 
analyses were developed to validate the predictive precision of 
this nomographic representation (Figure 5B).

Figure 5.  Nomogram development and validation. (A) Integrated 
prognostic nomo-gram incorporating clinicopathological 
parameters and disulfidptosis risk classification for overall 
survival prediction in gastric adenocarcinoma patients (** 
p < 0.01; *** p < 0.001). (B) Calibration plot assessment of 
nomogram accuracy.

3.4. Functional analysis of the model
The circle chart and corresponding notes (Figure 6A, B), column 
chart (Figure 6C) and bubble chart (Figure 6D) of GO and KEGG 
enrichment analysis revealed significant asso-ciations between 
these 3 drlncRNAs and sulfur compound binding, canonical 
WNT sig-naling pathway, cell-substrate adherens junction and 
cAMP signaling pathway.

Figure 6. Functional pathway characterization between 
differential risk stratification cohorts. (A, B) GO enrichment 
analysis. (C, D) GO and KEGG enrichment analysis.

3.5. Immune infiltration status

For the purpose of exploring the difference of tumor 
microenvironment between two disulfidptosis score groups, we 

implemented the Estimation of STromal and Immune cells in 
MAlignant Tumor tissues using Expression data (ESTIMATE) 
computational ap-proach to quantify neoplastic tissue purity. 
According to the boxplots, quantitative as-sessment revealed that 
elevated risk cohorts exhibited superior scoring metrics compared 
to their reduced risk counterparts in StromalScore(p=2.5e-10), 
ImmuneScore(p=0.039) and ESTIMATEScore(p=6.1e-06) 
(Figure 7A). Subsequently, we analyzed the differences in 
immune cell subpopulations in TME between two risk groups. 
The bubble plot visualiza-tion demonstrated that patient cohorts 
with elevated risk scores corresponded to en-hanced immune cell 
infiltration density, such as CAF (Cancer associated fibroblast) 
in XCELL, MCPCOUNTER and EPIC, Macrophage 2 in 
QUANTISEQ, CIBERSORT and CIBERSORT-ABS (Figure 
7B). Additionally, boxplot analyses comparing 29 immune 
cel-lular populations and functional parameters between risk-
stratified cohorts indicated that patients with elevated risk 
classification exhibited increased MAST cells infiltration cou-
pled with diminished MHC class I expression levels (Figure 
7C, D). Immune checkpoint molecule evaluation demonstrated 
upregulated expression patterns of several checkpoints including 
PDCD-1, CD274 (PD-L1) and CTLA-4 within the reduced risk 
population (Fig-ure 7E).



OPENPUB J of Can Res & RewPage 8  of  12

Figure 7. Immunological microenvironment evaluation in 
gastric adenocarcinoma patients. (A) Comparative assessment of 
immune infiltration metrics, stromal component quantification, 
and comprehensive microenvironment estimation between 
elevated and reduced risk stratification cohorts. (B) Bubble plot 
visualization depicting immunological cellular composition 
across risk-stratified populations utilizing seven distinct 
computa-tional algorithms. (C, D) Boxplots representation 
of differential immune cell populations and immunological 
functional parameters between patient cohorts with contrasting 
risk classifications. (E) Boxplot of expressional variation of 
ICPs between differential risk cate-gories.

3.6. Immunotherapy response analysis
In this part, TMB, MSI, TIDE analyses were conducted. 
TMB comparative analysis demonstrated elevated genomic 
alteration frequencies among patients classified in the reduced 
risk category (Figure 8A). To comprehensively investigate 
genetic mutational landscape disparities between risk-stratified 
cohorts, we generated corresponding muta-tional waterfall 
visualizations. Within the 15 most frequently mutated genes, 
exclusively the TP53 tumor suppressor gene exhibited increased 
mutational prevalence in the high disulfidptosis score patients, 
and we noticed that the mutation rate of ARID1A gene in the 
high-risk cohort exhibited substantially diminished prevalence 
compared to patients clas-sified in the reduced risk population 
(Figure 8B). Next, we explored the relationship be-tween TMB, 
patient survival, and risk score (Figure 8C). Survival analysis 
revealed supe-rior outcomes among gastric carcinoma patients 
exhibiting elevated tumor mutational burden compared to those 
with reduced genomic alteration frequencies (p=0.009), with 
mutational burden status demonstrating independent prognostic 
significance irrespective of risk stratification metrics. In addition, 
when we explored the relationship between MSI and risk score, 
we found that the proportion of patients with “MSI-H” in the 
low disul-fidptosis score group (32%) was much higher than that 
in the high disulfidptosis score group (9%) (Figure 8D). The risk 
score of patients with “MSI-H” was much lower than pa-tients 
with “MSS” (p=4.7e-10) and “MSI-L” (p=1.7e-05) (Figure 
8E). Finally, Tumor Im-mune Dysfunction and Exclusion 
computational analysis demonstrated elevated im-mune evasion 
scores among high disulfidptosis cohort (Figure 8F).

Figure 8. TMB, MSI and TIDE analysis. (A, B) Differential 
somatic mutational land-scape characterization between 
elevated and reduced risk patient cohorts. (C) Kaplan-Meier 
survival analyses across stratified gastric adenocarcinoma 
patient subpop-ulations. (D, E) Association patterns between 
risk classification metrics and MSI status. (F) Comparative 
analysis of TIDE algorithmic scores between contrasting risk 
stratification categories.

3.7. Drug sensitive analysis
By performing drug sensitivity analysis, we identified a series of 
drugs (e.g., gemcita-bine, ABT.888) that exhibited lower IC50 
values in GC patients with low disulfidptosis scores (Figure 9).

Figure 9. 16 therapeutic agents demonstrating enhanced efficacy 
in low disulfidpto-sis scores group.
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4. Discussion
A literature search revealed 24 genes involved in the 
disulfidptosis pathway. Co-expression analysis enabled us to 
identify lncRNAs associated with disulfidptosis. Subsequently, 
using Cox proportional hazards regression methodology 
combined with LASSO penalty analysis, we constructed a 
prognostic signature comprising three disul-fidptosis-associated 
lncRNAs. AC107021.2 has emerged as a diagnostic marker for 
gastric and lung adenocarcinomas[17,18], while AC016394.2 
and AC129507.1 show diagnostic potential in both gastric 
adenocarcinoma and prostate carcinoma[19,20]. Nevertheless, 
the interrelationship between disulfidptosis-associated long non-
coding RNA molecules and immunological microenvironment 
characteristics in gastric adenocarcinoma, along with their 
prognostic significance, remains to be elucidated. Our study 
investigated drlncRNAs in gastric cancer and established a 
three-drlncRNA prognostic signature to predict the prognosis 
and provide precise and individual clinical treatment guidance 
for patients with GC.

Through independent prognostic analysis, we demonstrated that 
our risk model’s ability to predict patient outcomes remains 
significant when accounting for other clinical parameters. 
ROC curve analyses yielded area under curve measurements, 
thereby con-firming our risk stratification algorithm’s prognostic 
precision for patient mortality pre-diction across one-year, 
three-year, and five-year timeframes. Kaplan-Meier curves 
of dif-ferent clinicopathological parameters including patient 
age, histological differentiation, disease progression stage, 
primary tumor dimensions, regional lymphatic involvement, 
and remote metastatic status, illustrated that our risk model 
can predict patient outcomes regardless of clinical variables. 
Through nomogram and calibration curves, our model enables 
individualized prediction of patient survival at one-year, three-
year, and five-year timepoints.

As anticipated, enrichment analysis revealed a strong 
association between disul-fidptosis-related lncRNAs and sulfur 
compound binding. The identification of disul-fidptosis revealed 
a promising therapeutic strategy for cancer treatment, wherein 
sulfur compound binding orchestrates this cell death process 
through the activation of specific signaling cascades[10]. GO 
and KEGG analysis also revealed other functions and path-
ways that are closely related to drlncRNA, such as GPCR (G 
protein coupled receptor) binding, cAMP signaling pathway. A 
recent study revealed that activation of the Gαs-PKA signaling 
pathway drives CD8+ T cell dysfunction and confers resistance 
to immuno-therapy[21]. cAMP exhibits dual regulatory effects 
on tumor cell survival and proliferation through its functional 

interplay with diverse immunological constituents within TME, 
particularly T cells and tumor-associated macrophages (TAMs)
[22-27].

Given that GO and KEGG enrichment analyses revealed 
associations between drlncRNAs and immune function, we 
proceeded to investigate the immune landscape by comparing 
differential patterns of immunological cellular infiltration between 
patient co-horts stratified by contrasting risk classifications. The 
elevated TME scores observed in high-risk patients indicate 
enhanced immune cell infiltration and enriched stromal cell 
content in their tumor microenvironment. Macrophages 
exhibit two distinct polarization states: M1 and M2[28]. In our 
analysis of immune cell infiltration patterns within the TME, 
we observed contrasting infiltration levels between M1 and 
M2 across the two disul-fidptosis score groups: high levels of 
M1 infiltration were observed in the low-risk group, while high 
levels of M2 infiltration were observed in the high-risk group. 
While M1 con-tributes significantly to anti-tumor immunity, 
M2 facilitate tumor progression by promot-ing immune escape, 
angiogenesis, and extracellular matrix remodeling in tumor 
cells[29,30]. This observation potentially elucidates the poor 
survival of individuals in the high disulfidptosis score group. 
Besides, the distinctions in sixteen immune cells and thirteen 
immune-related pathways across two disulfidptosis score groups 
were investi-gated using ssGSEA (single-sample Gene Set 
Enrichment Analysis). In the high disul-fidptosis score group, we 
observed elevated levels of mast cells accompanied by downreg-
ulation of MHC class I (Major Histocompatibility Complex I) 
molecules. A recent study shows that mast cells contribute to 
resistance against anti-PD-1 immunotherapy, and tar-geted 
depletion of mast cells enhances the therapeutic efficacy of ICP 
blockade[31]. Addi-tional research shows that cancer cells can 
escape immune detection by reducing the ex-pression of MHC-I. 
This decrease in MHC-I expression represents a key pathway 
for both inherent and adaptive resistance to immunotherapeutic 
interventions in cancer pa-tients[32]. Unlike traditional therapy, 
this approach doesn’t directly target tumor cells. In-stead, it 
works by alleviating immunosuppression and stimulating the 
body’s natural an-ti-tumor immune response, demonstrating 
remarkable efficacy across various treat-ment-resistant tumors. 
When combined with chemotherapy, targeted therapy, radiother-
apy, and other treatment modalities, it enhances overall 
therapeutic outcomes[33-36]. El-evated expressional profiles of 
ICP molecules, including PDCD1, PD-L1, and CTLA-4, in the 
low disulfidptosis group suggests a potentially enhanced clinical 
efficacy following immunotherapy. 

TMB quantifies the cumulative frequency of nonsynonymous 
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somatic alterations de-tectable throughout the neoplastic 
genomic landscape. As molecular prognostic indicator for ICI 
therapy response, MSI-H demonstrates predictive value across 
diverse tumor types, potentially due to its role as a mechanistic 
mediator of immunotherapy outcomes[37]. Accumulating 
evidence suggests that TMB levels serve as a predictor of patient 
respon-siveness to immune checkpoint inhibitors, particularly 
when combined with PD-1 ex-pression and MSI status for 
enhanced prognostic accuracy[38-41]. Our analysis demon-
strated that patients with low disulfidptosis scores exhibited 
significantly higher tumor mutational burden (TMB) (p=1.2e-09) 
and a greater proportion of MSI-H cases (32%) compared to the 
high-score group. Collective observations indicate that patients 
with low disulfidptosis scores may achieve enhanced therapeutic 
responses to immunotherapy. Moreover, we found patients 
with elevated TMB showed improved survival outcomes re-
gardless of disulfidptosis scores. To systematically characterize 
genomic alteration pat-tern disparities between contrasting 
risk stratification cohorts, we constructed mutational waterfall 
visualizations representing the fifteen genes exhibiting highest 
frequency modi-fications. Notably, among the 15 most frequently 
mutated genes, only the tumor suppres-sor gene TP53 showed a 
higher mutation frequency in the high-risk group compared to the 
low-risk group. In contrast, we observed that ARID1A mutations 
were markedly less prevalent in patients with high disulfidptosis 
scores, establishing a distinct mutational pattern between 
two risk classifications. TP53 represents the most frequently 
mutated gene across human cancers[42]. Its mutations not only 
compromise its tumor-suppressive functions but also confer 
oncogenic properties to the mutant p53 protein[43]. Studies have 
demonstrated that TP53 mutations correlate with poor clinical 
outcomes in cancer pa-tients[44]. This observation, on the other 
hand, provides a mechanistic explanation for the poor survival 
outcomes observed in patients with high disulfidptosis scores. 
Multiple clinical trials have demonstrated that ARID1A-mutated 
solid tumors exhibit enhanced responsiveness to immune 
checkpoint inhibitor interventions across diverse malignancy 
classifications, independent of MSI status or TMB[45-47]. 
Collective observations indicate that individuals with high 
disulfidptosis scores may exhibit resistance to immune check-
point inhibitor therapy. 

TIDE analysis further showed that patients with high disulfidptosis 
scores exhibited an increased probability of developing resistance 
to immunotherapy, suggesting limited therapeutic benefit from 
immune checkpoint blockade in this subgroup. Moreover, com-
prehensive drug sensitivity analysis identified multiple potential 
therapeutic agents that showed enhanced efficacy in reduced-
risk classification, while also revealing drugs prone to resistance 

in the increased-risk classification, thereby providing valuable 
insights for personalized treatment strategies. Contemporary 
clinical investigations have established that the combination 
of gemcitabine plus cisplatin with PD-L1 inhibitors exhibits 
prom-ising therapeutic efficacy in patients with advanced biliary 
tract cancer[48]. In another phase I dose-escalation study, the 
combination of ABT.888(veliparib) with PD-1 inhibitor plus 
platinum-based doublet chemotherapy demonstrated promising 
therapeutic efficacy in patients with metastatic or advanced 
non-small cell lung cancer[49]. According to these results, the 
combination of ICIs with conventional chemotherapeutic agents 
represents a promising therapeutic strategy for gastric cancer.

Additionally, we realized that this study still had limitations. 
Firstly, the 3 drlncRNAs prognostic model was developed and 
verified in light of the findings from retrospective analyses of 
TCGA. It is necessary to conduct prospective cohort studies to 
further validate this risk model. Secondly, more independent 
immunotherapy cohorts were needed to confirm the predictive 
value of the prognostic signature for immunother-apy response. 
Lastly, validation of this predictive framework’s reliability 
and clinical im-plementation value necessitates acquisition 
of extensive patient datasets, complemented by mechanistic 
investigations into how these long non-coding RNA molecules 
influence gastric carcinoma initiation and progression.

5. Conclusions
In summation, our established disulfidptosis-related lncRNA 
prognostic model ena-bles accurate prediction of patient survival 
and facilitates the identification of potentially effective drugs 
and treatment-sensitive individuals, ultimately contributing to 
improved survival outcomes in STAD patients.
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