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1.	 Introduction
Since the first observation of Rydberg excitons (RE) in Cu2O [1] they become a subject of intensive studies [2]. The research started 
from optical properties of REs in natural crystals, then it evaluated towards REs in low dimensional nanostructures [3-5]. Both linear 
and nonlinear optical properties were examined. The theory, so far, is well-developed and the theoretical results agree well with 
experimental findings. The majority of experiments and theoretical considerations on the optical properties of Rydberg excitons was 
devoted to excitons created by a harmonic-time dependent wave of the type E(r, t) = E0 exp(ikr-iωt) where E is the electric field 
vector, ω the frequency (circular frequency) and k the wave vector. Since the optical functions are represented by time averages, 
they remain time independent, and the exciton (exciton population) time dependence was not discussed. Recently, the trend changed 
to experiments and theory on the dynamic processes [6,7], where excitons are created by pulsed excitation. The exciton population, 
created within a finite time, decays then with a time constant, which is related to the so-called exciton life time.

The relevant equations on excitons created in stationary way contain an number of parameters, and most of them are known (for 
example electron- and hole effective masses, quantum states oscillator strengths, energy gap, dielectric constant, exciton Rydberg 
energy etc.) However, there is a one important parameter, which is not exactly known. It is the above mentioned exciton lifetime 
of a quantum state n (notation T2n, τn), which corresponds to an energy Tn = h/T2n, also called the damping constant (homogeneous 
broadening). The coefficients Tn represent dissipative processes that, in general (and we will see it below) are energy and temperature 
dependent [8-10]. The topic of calculation of exciton lifetime has not been covered yet. There are some estimation, as, for example 
Tn (n2-1)/n5 [12] which gives the tendency τn n3. Very often the damping Γ was assumed as a free parameter, and was determined 
by fitting experimental results, thus in an indirect way.

In a recent paper the authors reported on a direct measurement of the lifetime and coherence time of Cu2O Rydberg excitons up to 
principal quantum number n = 9 [6]. They used a method, where a degenerate two-photon excitation (2PA) generates a one-photon 
emission at twice the pump energy. They used short (a few ps) laser impulses and the exciton lifetime exceeds the impulse duration. 
When the impulse vanishes, the excitons decay for each Rydberg state. The slope of the decay rate gives directly the lifetime τ, and 
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coherence time τcoh, by the relation τcoh = 2τ. During the decay process one observes oscillations (the so-called quantum beats) due 
to the interference of the neighboring exciton states. In addition, in the dependence of the lifetime on the laser pump power and 
the probe temperature, is measured [6]. The general tendency is the decrease of the lifetime with the increase of the pump power 
(temperature).

Since a two photon excitation is a nonlinear process (a χ(3) process), in the theoretical description of the above reported process we 
advance the application of the real density matrix approach (RDMA, also called coherent wave theory). This approach has been 
successful in describing linear and nonlinear optical properties of semiconductors in terms of Rydberg excitons. Recently it was 
used in the theoretical description of two photon non-degenerate absorption in silicon, in the case of stationary excitation [11]. 
Here we extend this approach to the case of degenerate 2PA and finite-time excitation impulses. As compared with earlier works 
on the application of RDMA to Rydberg physics, the RDMA scheme is supplemented by quantum beatings equations, time-scale 
separation, and the dependence of exciton lifetime on applied laser power [12].

The paper is organized as follows. In Section 2 we recall the basic equations of the RDMA, adapted to the case of degenerate 
2-photon absorption. In Section 3 we explicitly derive the formulas for linear and non- linear susceptibility for a Cu2O crystal, 
irradiated by a finite-time pulse. Next, in Section 4 we calculate the exciton life- and coherence times and other parameters needed 
for intensity calculations. In Section 5 we derive the final expression for the nonlinear time- dependent 2P emission intensity. Finally, 
in Section 6, we present the Fourier transforms of the theoretical emission intensity. The Appendix contains details of the presented 
calculation.

2. Two-Photon Absorption in RDMA Formalism
2.1 The Constitutive Equations
In the RDMA approach the bulk nonlinear response will be described by a closed set of differential equations (“constitutive 
equations”): one for the coherent amplitude Y(r1, r2) representing the exciton density related to the inter-band transition, one for the 
density matrix for electrons C(r1, r2) (assuming a non- degenerate conduction band), and one for the density matrix for the holes in 
the valence band, D(r1, r2). Below we will use the notation
           Y(r1, r2) = Y12,	 etc,	 (1)
 The constitutive equations have the form: the inter band equation

 
conduction band equation

valence band equation

where the operator Heh is the two-particles (electron and hole) effective mass Hamiltonian
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with the separation of the center-of-mass coordinate R from the relative coordinate ρ on the plane x − y,

and E12 means that the wave electric field in the medium is taken in a middle point between r1 and r2: we take them at the center-of-

mass

In the above formulas me, mh are the electron and the hole effective masses (more generally, the effective mass tensors), Mtot is the 
total exciton mass, and µ the reduced mass of electron-hole pair. The smeared- out transition dipole density M(r) is related to the 
bi- locality of the amplitude Y and describes the quantum coherence between the macroscopic electromagnetic field and the inter-
band transitions [4]. The terms (∂Y/∂t)irrev etc. describe the irreversible dissipation and radiation decay processes due to all dephasing 

processes. The resulting coherent amplitude Y12 determines the excitonic part of the polarization of the medium

where r = r1 - r2 is the electron-hole relative coordinate. Having in mind experiments described in [6], we consider a situation where 

the irradiating electromagnetic field E includes two frequencies ω1 and ω2, and is written as

 
with the envelope function F (t) (the impulse shape, the definition will be given below), and

and nj are refractive indices at the frequencies ωj. 

In the following, we consider only one component (A)α of the vectors E, P and M. The linear optical properties are calculated 
by solving the inter band equation (2), supplemented by the corresponding Maxwell equation, where the polarization (8) acts as 
a source. For computing the nonlinear optical properties we use the entire set of constitutive equations (2-4). Although finding a 
general solution of the equations is challenging, in special situations a solution can be found. For example, if one assumes that the 
matrices Y, C and D can be expanded in powers of the electric field E, an iterative procedure can be used. In general, solving for Y,C 
and D in the context of two- photon absorption depends on the relation between the incoming frequencies ω1, ω2 (and thus energies 
ℏω1, ℏω2) and the fundamental gap energy Eg, which enters as a parameter in the electron-hole Hamiltonian.

We consider the case, when
ℏω1 + ℏω2 ≤ Eg, the excitation of discrete excitonic states is possible.
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2.2 The Iterative Solution of Constitutive Equations
Our goal is to derive expressions for the two-photon absorption coefficients. These can be obtained from the third-order nonlinear 
susceptibility, which, in turn, can be determined via an iterative procedure within the context of the RDMA. To apply the iteration 
procedure we assume, that the relevant quantities P, Y, C and D can be expanded in series of the input electric field amplitudes. The 
considered inter-band transition is composed of two steps. The first step starts from the initial state Ei (here the maximum Ey of the 
valence band) to an intermediate (virtual) state β, the second is from the state β to the final state Ef (the minimum of the conduction 

band Ec. The first step in the iteration consists of solving the equation (2), which at this stage takes on the form

 
where E has the form (9). The Hamiltonians Hj,eh are defined with regard to the two steps of transition described above:

"where µ is the exciton reduced mass tensor for given pair of bands 
            
C and V, and V(r) the dielectrically screened electron-hole Coulomb potential, Eβ is the energy of the virtual band, and EcEv 
correspond to extreme od valence and conduction bands". When considering the time evolution of the exciton population, generate 
by the impulse (9), two time scales should be accounted for. The processes of exciton creation are rapid processes, on the femtosecond 
scale. The time characterizing the decline process of the population is proportional to the lifetime τ , which is of the order τ < 20 ps, 
i.e. is a slow process. Therefore the amplitudes Y(1)

j will consist of two parts

For the irreversible part we assume the simple form

As follows from experiments, the decline of excitonic absorption is governed by the rule  To obtain this behavior, 
we distinguish slow and fast changes (in other words, two time scales) in the excitonic amplitudes Y and matrices C,D. With regard 
to (9), we put into (11), obtaining

Taking the 2 steps in 2-photon process, we have two pairs of equations
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with similar equations for  M is the relevant component of the transition dipole density. Now we separate the slow and rapid 

processes, by putting 

       (20)

In what follows we consider only the resonant part. The parts  correspond to rapid processes, and have the form

where Ev,Ec are the extreme of the valence and conduction bands, respectively. The coefficients cn`m and eigenfunctions are defined 

as follows

Ylm are the spherical harmonics, Rnl are the radial functions of a corresponding hydrogen atom-like Schrödinger equation,

where

In the above expression M(a;b;z) is the confluent hypergeometric function. The energy eigenvalues related to the eigenfunctions 

(23) have the form

Where

R* is the effective exciton Rydberg energy for the exciton

,	 (27)

the anisotropy parameter γ is defined as
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,	 (28)

are the heavy hole exciton reduced masses in the x-y plane and in the z-direction, respectively,

0 is the vacuum dielectric constant, and are relative dielectric tensor elements. The quantity is given by the following 

expression [13]

With regard to (25), the excitonic resonance energies result from equation

The slow part slow satisfies the equation

as previously, F(t) describes the exciting impulse profile, and

where, to simplify the notation, we put Equation (32) can be solved by means of Green’s function, satisfying the 
equation

with the solution

Thus, the solution of (32) has the form

As follows from the definition of  slow will be labelled by quantum numbers n;l;m.

2.3 Coherence Time and Exciton Life Time

The values of the above mentioned exciton life time can be taken from experiments [6] Table I.) We can also estimate them, using 
the relation between the coherence time and the exciton life time. Coherence time is the time duration over which the medium
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Figure 1: Exciton lifetimes, directly measured S states lifetimes [6] (blue dots), in good agreement with the 
n2.7 scaling (black dashes), up to n = 6,(42), for n > 6 good agreement with scaling (43) for S excitons
 

Figure 2: The same as Figure 1, for D2 states, for n ≤ 6 in good agreement with n3 scaling, for n > 6 good agreement with (43) for 
D excitons

impulse response is considered to be not varying. The coherence time, which we denote as τcoh, is calculated by dividing the 

coherence length by the phase velocity of light in a medium; approximately given by

 
where λ is the central wavelength of the source, ∆ν and ∆λ is the spectral width of the source in units of frequency and wavelength 
respectively, and c is the speed of light in vacuum. Identifying the variation of impulse response with energy difference between 

neighboring exciton states we obtain (without specification to S or D states)

where δ is a certain parameter. Below we take the values δS = 19.7 and δD1 = 19.73, δD2 = 18.72, for S and D1,D2 excitons, 
respectively, which give a fairly good agreement of theoretical and experimental values of exciton life times. If the energies are 

given in meV, we obtain the result in picoseconds

 
On the other hand, we have the relation
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τn being exciton lifetimes. By equations (39, 40) we obtain the lifetimes

The results for the S states 2 ≤n ≤9, and D states 3 ≤n ≤9 are given in Tables A1 and A2. We observe a fairly good agreement with 
the experimental data for the states n ≤ 7. In this interval the lifetimes scale approximately as 
τn00 = τ0S × n2.7, S excitons
τn22,1 = τ0D1 × n2.7, D1 excitons,	 (42)
τn22,2 = τ0D2 × n3, D2 excitons,

where τ0S = 0.13,τ0D1 = 0.15,τ0D2 = 0.11. The formula for D2 exciton is identical as the formula for the case of P excitons in Cu2O 
used in [14]. The expressions (42) correspond to the scaling with quantum defects [6]. As observed in experiments, the values of 
lifetimes for n > 7 arrive at a plateau. For higher states states we observe a slow increase, tending to a value τ∞. The scaling in this 

interval can be described by the formula

 

The results, for

τ∞S = 22.89 ps,	 λS = 5.36 × 10−3,	 (44)

τ∞D1 = 23.65 ps,	 λD1 = 5.386 × 10−3,	

τ∞D2 = 23.14 ps, 25;      λD2 = 6.6 × 10−3,               (45)

are given in Tables A1 and A1. The above data include the splitting into D1 and D2 excitons. The switching between the increasing 
of T (those decreasing of intensity) can be explained as follows [15]. As we have shown above, the absorption spectrum for energies 
below the energy gap consists of a series of lines at energy values (31) with intensities decreasing, roughly speaking, as 1⁄n3 (those 
exciton lifetimes increasing, see (42)). For high values of the quantum number n (i.e. for energies just below the gap), the density 

of exciton states per unit energy is

and, since the density decreases as 1/n3, we obtain a finite limit in the absorption coefficient, represented above by the quantity τ∞, 
for energies near Eg.

2.4 Quantum beats
In experimental intensity curves shown in Ref. [6] some oscillations, also called quantum beats, around the smooth shape determined by a function F(t) are observed. 
There are several types of oscillations, with different frequencies with different periodicity and amplitudes. As we show below, the oscillations are due to interference 
between quantum mechanical waves, generated by neighboring states, in the region of an exciton state n (S or D). Consider, for example, states ǀ300˃, ǀ322 ˃, and  
ǀ400 ˃, denoted further by 1,2, and 3. The state of the system is described by three waves

Ψ(r,t)=	a1ψ1(r)exp(−iΩ1t) + a2ψ2(r)exp(iΩ2t)

                             +          	a3ψ1(r)exp(iΩ3t),	 (47)

https://openpubglobal.com/journal/open-access-journal-of-physics-mathematics-issn-3068-7527-
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where a1, a2, a3 are real numbers such that

The density of probability, that the system is in a non- stationary state described by (47), is given by

The quantum beats are attributed to transitions between neighboring S and D states |n00⟩, |n22⟩,

|(n + 1, 00⟩. Their periodicity is given by the equations

The impact of quantum beats on the exciton spectra will be described by expressions of the type (50). The over-all expression for 

the oscillating 

Figure 3: Linear time dependent emission, showing quantum beats for 4D2 excitons, the experimental curve from [6]
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Figure 4: Linear time dependent emission, showing quantum beats) for 6S excitons

will be described by expressions of the type (50). The over-all expression for the oscillating terms will be taken in the form [6]   

where j runs over the inter-exciton states transitions starting with nS(nD) accounted for. The quantum beats amplitudes qjn are 
proportional to the quadrupole transitions moments Qjn, given in [8],

3. Linear and Nonlinear Susceptibility
3.1 Linear Susceptibility
The above consideration allow to calculate the total excitonic optical response in the 2 photon absorption process. This will be 

obtained by means of linear and nonlinear excitonic amplitudes 

The linear amplitudes have the form

 
with analogous formula for " . We use" the notation

 

The solutions for determined above allow the calculation of the linear polarization being a function of time t
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3.2 Nonlinear Susceptibility
In order to obtain the nonlinear response, the solutions for  are inserted as a source term in the conduction 
band equation (3) and the valence band equation (4). Note that each of these equations depend on the electromagnetic field. If the 
irreversible terms are well defined, the equations (3,4) can be solved, and this second step of the iteration yields expressions for the 
density matrices C and D. We use for the irreversible terms a linear relaxation time approximation

"where X = (r1+r2)/2, T1 is the carrier relaxation time, and f0e, f0h are normalized Boltzmann distributions". for electrons and holes, 
respectively,

 

where kB is the Boltzmann constant, and T the temperature. The same type of expression holds for the holes. From (59) one obtains 
the solutions in the form 

where we present an approximation following from the assumption  . The sources terms JC; JD are defined as
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where

and Jc = JD. The above expressions can then, in turn, be used as source term for equation (2), which can which can be solved to obtain 

expressions for in the final step of the iteration. Now the equations for the third order coherent amplitudes have the form

 

with similar equations for where

Equations (64) will be solved by using the same method as in the case of linear amplitudes Y(1). We put Y(3) into the form

In analogy to definition (21), the stationary part of Y(3) will be assumed in the form

https://openpubglobal.com/journal/open-access-journal-of-physics-mathematics-issn-3068-7527-
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If neglecting the anti-resonant terms, we obtain

where   

 

where the nonlinear susceptibilities have the form
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The formulas (71),(71) are the basic formulas, which describe the properties of 2PA excitons, excited by finite-time laser pulses.

4. Results on Exciton Lifetimes and Other Parameters
4.1 Exciton Lifetimes
We have computed the emission dynamics of Rydberg excitons in Cu2O created by two-photon absorption. We used the Cu2O band 
parameters, collected in Table 1. The first step in the calculations is to establish the

Table 1: Band parameter values for Cu2O from [13], energies in meV, masses in free electron mass m0, lengths in nm, ∆LT from 
[16]. lifetimes of excitons for various exciton states, where we considered the even states S and D. Those lifetimes were measured 
in [6] and we formulated equations from which the lifetimes can be calculated, for various intervals of the quantum number n. The 
results are shown in Table A1, and illustrated in Figures 1 and 2. The mentioned above two features of the dependence on the state 

number, the increase of the lifetime for n ≤ 7, and a transition to plateau for n > 7, are visible.

4.2 Quantum Beatings Periodicity
To explain the oscillations around the envelope describing the excitonic emission delay, the periodicity of these oscillations (quantum 
beatings) should be calculated. We use the equations (42) and (52). The experimental findings and results of the calculations are 

presented in Tables A3 and A4.

4.3 The Dependence of Lifetimes on Laser Power and Temperature
The exciton life time is related to the damping constant Γ, being also the linewidth, by the relation

The quantity Γ depends on temperature by relation [10]

where the term γACT is due to exciton scattering with acoustic phonons, and term nonlinear in temperature is due to interaction with 
LO phonons. The coefficients γAC and γLO represent the strength of the exciton- acoustic phonon interaction, and exciton-LO phonon 

interaction, respectively, while the term Γ0 is the low- temperature limit of the line width. As can be seen from (73,74),

 
which means that the life time decreases with the increasing temperature. By given parameters γAC, γLO one can derive an analytical 

expression for the dependence τ (T). The values of coherence times for increasing power can be obtained by the relation

https://openpubglobal.com/journal/open-access-journal-of-physics-mathematics-issn-3068-7527-
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The coefficients τ0, b1, b2, b3 (τ0 in ps, b3 in 1/mW)
b1 = 0.98,	 b2 = 0.04,
b3 = 6.6 × 10−3,	 τ0 = 0.394,	 (77)

were obtained from fitting experimental results from [6]. The dependence of exciton lifetimes on state number and laser power can 
be compared with the dependence on temperature and state number. Having in mind the experiments [6], we consider the S states n 
= 5, 7 and calculate the lifetimes as function of temperature for the given states. We use the formulas.

    (78)

The results are presented in Table A6.

4.4 Exciton Oscillator Strength
The oscillator strengths for the exciton state ǀnlm˃ are defined as

For further discussion we must define the shape of the transition dipole density M. Since we consider only one component, we take 
a scalar function. The shape of M depends on the considered exciton symmetry. For simplicity, the S exciton function M is assumed 

in the form

where r0 is the so-called coherence radius [13], and the coefficient M01 is related to the longitudinal transversal splitting energy. An 
example of the latter is the integrated strength of dipole moment M01 for S excitons, obtained from the equation

The results for S states

are displayed in Table A7, for the appropriate η00 value. For comparison, we show the oscillator strengths for the isotropic case (η00 
= 1, r0 <<a∗) (“pure”), which obey the scaling law fn00 ∝ 1/n3. The results for η00 6= 1 show a deviation from this law
 

For the D excitons we use the transition dipole moment in the form [13]

For the considered ǀn22˃ states the eigenfunction can be put into the form

https://openpubglobal.com/journal/open-access-journal-of-physics-mathematics-issn-3068-7527-
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where Nn2 are the normalization constants, which enter into the definition of fn22 oscillator strengths

Their values are listed in Tables A7 and A8. As in the case of S excitons, we show the “pure” values of fn22, obtained for η22 = 1, and 

given by the relation formula

 
4.5 Dependence of A and B on the Laser Power
The coefficients Anlm, Bnlm, defined in equations (69), depend on the temperature by definitions of λ’s

 
They coefficients for hole are determined for the appropriate masses (ǀǀ or z), and have the form

The electron effective mass is assumed to be isotropic. As stated in [6], the dependence of coherence and life times on the laser power 
is equivalent to a dependence on temperature. Therefore we must calculate λ’s (89) for various temperatures and, correspondingly, 
for various laser powers. Since we will use the quantities A;B in calculations of the excitonic emission of exciton 5S state, we will 
focus the attention on the quantities A500;B500. Their calculated values as function of temperature/laser power are displayed in Tables 

A9 and A10. We observe that these quantities are decreasing with the increasing temperature /laser power.

5. Nonlinear Time Dependent 2P-Absorption Coefficient
Having linear and nonlinear susceptibilities, we obtain the total susceptibility by the relation

Since the contributions of terms related to ω1, ω2, where we take ω1 = ω2, are equal, we denote ω1 + ω2 = ω. The imaginary part of 

(90) defines the nonlinear absorption coefficient

https://openpubglobal.com/journal/open-access-journal-of-physics-mathematics-issn-3068-7527-
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where ǀEpropǀ

2 = ǀꟙ01ǀ2 = ǀꟙ02ǀ2. Having in mind the experiments[7], we will consider the absorption for a given exciton state nlm. Using 
(81) and (58), we obtain for S-states

where

                                     (93)
For the nonlinear contribution we obtain

            (94)

Similar expression holds for the D-exciton contribution. Absorption coefficient  

obtained from the imaginary part of (94), has the form

We use the relation

appropriate for laser spot diameter, and separating the parameters appropriate for Cu2O,
obtaining for nS states

where

In calculations we use a Gaussian shaped normalized pulse

https://openpubglobal.com/journal/open-access-journal-of-physics-mathematics-issn-3068-7527-
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where τp is the pulse temporal duration. Using this shape we calculate the expressions Gn(t,t’) F(t’) and, in a lowest approximation, 
we obtain the time dependence of the normalized emission in the form

where Nn are normalization constants

The theoretical results are illustrated in Figure 4 for 5S state and three values of the applied laser power. We observe an exponential 
decay, governed by the exponent −1/τ5 , and quantum beats. The details of calculation are given in Appendix.

6. Fourier transform
Having an analytical form for the oscillating functions one can easily calculate the Fourier transform of these functions. 

Using the standard definition

 
and substitute t we obtain

where j runs over the considered transitions. Then

The above expression will be applied for the cases of 4D and 6S excitons. In the case of 4D excitons we use the frequencies 
corresponding to the transitions n1S →n2D, where n1 = 3; 4; 5, and n2 = 4; 1; 4; 2; 5; 1; 5; 2, which are displayed in Tables A3 and 
A4. With the above data we obtain the expression for the Fourier transform for 4D

The corresponding Fourier transforms are presented in Figures 6 and 7. In both cases the factors were chosen to be proportional to 
the transition quadrupole moments for n1S →n2D [8]. The numbers 28.2 in (102) and 14 in (102) give the fit to the transform obtained 
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numerically from experimental curve. We considered the quadrupole moments for the transitions n1S →n2D2 states, due to the 
symmetry properties of D2. The state D1 is not a pure D state, but reveals a mixing with nearest P state [17]. Therefore the quadrupole 
moment for the transition n1S →n2D1 has a smaller value than the moment n1S→n2D2. We assumed the rate 0.8, which  of D2. The 
state D1 is not a pure D state, but reveals a mixing with nearest P state [17]. Therefore the quadrupole moment for the transition 
n1S → n2D1 has a smaller value than the moment n1S → n2D2. We assumed the rate 0.8, which corresponds to the experimental 
observations. For the D4, 1→ D4, 2 we used the quadrupole moment for the P4 →S4 transition, due to the above described mixing 
of states. We observe the property mentioned in [6], that the oscillations are typically dominated by a main frequency accompanied 
by few others of smaller amplitude. It is due to the structure of amplitudes qjn (54), where the major contribution comes from the 
state transitions nS → nD2 for n ≤ 5 and nS → nD1 for n ≥ 6, see also Tables I, II [8].

Figure 5: Linear time dependent emission for the state 5S and three applied laser powers

 7. Conclusions
This study contains derivation of analytical expressions describing the direct measurements of lifetimes of the even series of Rydberg 
excitons in Cu2O. We obtained formulas which show the power scaling laws for excitons S, D1, and D2 for the lower exciton states 
(n <6) and a saturation effect for n > 6 states, explaining origins of this effect. Using the real density matrix approach, we derived 
formulas for the time dependence of linear and nonlinear susceptibility, under action of pulsed excitation. Both susceptibilities 
show the effect of quantum beats. The time evolution shows an exponential decay, governed by the exciton life time. In addition, 
we described the lifetimes dependence on the applied laser power and the crystal temperature. Having analytical expression for 
the nonlinear susceptibility χ(3), we can calculate the nonlinear refraction index n2(W ), which enables the study of Kerr-type 
nonlinearities [11].

Figure 6: Fourier transform of the I4D emission function
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Figure 7: Fourier transform of the I6S emission function

Appendix A: Calculation Details
Appendix A.1: Exciton Lifetimes
We have calculated the exciton lifetimes using the equations (26), (29),(40,41,42) and the values of µǀǀ, µz from the Table 1, obtaining 

for the coefficient η00, relevant for S excitons

The case od D excitons is more complicated. If the exciton S can be considered as non-degenerate, for D excitons the band structure 
must be taken into account. The D states reveal a splitting, where one state has a larger energy than other with the same principal 
quantum number. We choose two states, which result from group-theoretical considerations [17], with representations(here for the 
state 4D) 4DΓ+Γ+(3/2) (state 4D1), and 4DΓ+(5/2) (state D2). The symmetry properties are reflected by in the Luttinger equations 

for the hole effective masses (in Cu2O the electron mass is assumed to be isotropic)

We take for the D1 state, and for the D2 state. Using the values = 0:54 [18], we 

obtain = 0:673 for the D1 state and = 1 for the D2 state, and

Table A3: Exciton beatings characteristic frequencies of the II type

The results are reported in Tables A1 and A2, and illustrated in Figures 1 and 2. For n > 5 we have chosen the values for D1. In Table 
A3 we present the values of quantum beats frequencies of the II type, calculated with the formula (20). For the lowest exciton states 
3 n 5 the splitting D→D1,D2 is accounted for, thus ∆n1 = E(nD1) En00, ∆n2 = E(nD2) En00 and, correspondingly, τqb,n1, τqb,n2, for n > 5 
∆n1 = respectively. In addition, we have calculated some examples of frequencies of the I type beats (values in ps):
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Appendix A.2: The Dependence on Temperature and the Laser Power
Since the crystal temperature is assumed to be proportional to the applied laser power W , we treat the exciton lifetimes shown in 
Table A1 as the values at T= 0, and calculate the coherence times as functions of the applied laser power by equation (76 The results 
are given in Table A5. The dependence of exciton lifetimes on state number and laser power can be compared with the dependence 
on temperature and state number. Having in mind the experiments reported in [6], we consider the S states n = 5, 7 and calculate the 
lifetimes as function of temperature for the given states. We use the formulas

The results are presented in Table A6.

Table A1: Exciton S (|n00⟩) eigenenergies En00, resonances ET n00 (meV), and lifetimes τn00 (ps), comparison of experimental 
data (Exp.) [6] and results of different scalings, obtained from equations (41-43)

Table A2: Exciton D (|n22⟩) eigenenergies En22, resonances ETn22 (meV), and lifetimes τn22 (ps) for both types of exciton D, 
comparison of experimental data (Exp.) [6] and results of different scalings, obtained from equations (41)-(43). The experimental 

values for D1, D2 excitons (|n22⟩1,2) from [6]

Table A4: Exciton beatings characteristic frequencies Ωn1n2 of the II type corresponding to (n2D → n1S) transitions
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Table A5: Lifetimes τn00 vs laser power W (τn00 in ps, W in mW)

Table A6: Lifetime vs temperature, n = 5, 7(|500⟩, |700⟩), experimental data from [6], theoretical results from Eq. (78), times in 

ps, temperature in K

Table A7: Oscillator strengths fn00 “pure”, and results of calculations (82) (Th, in terms of M2
01) and A8 we present the results of 

calculations of exciton oscillator strength for S and D exciton. 

Appendix A.3: Linear and Nonlinear Polarization, Time Dependence
The time evolution of exciton population at the given exciton state is described by the equation (99). Below we present the formulas 

derived from the mentioned

Table A8: Oscillator strengths fn22 “pure” ((88) manuscript), and results of calculations (Results, (87) manuscript), all oscillator 
strength multiplied by 10−4 M2

02ρ
4
0))
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Table A9: Variation of λ’s defined in equations (87) in the manuscript, with the laser power and temperature

Table A10: Quantities A500ϕ500(ρ0), B500ϕ500(ρ0), (A +B)0 = (A500ϕ500 + B500ϕ500), laser power in mW, equation for the data of 4D (I4D) 

and 6S (I6S excitons (linear part only)

 
Note that the lifetimes τn are taken for laser power 50mW. The resulting line shapes are displayed in Figures 3 and 4. When the 
nonlinear part is accounted for, we first must determine the dependence of quantities An, Bn on the laser power (probe temperature). 
We perform the calculations for the 5S state. Using the quantities λ (Table A9) we obtain the A500, B500 values

(Table A10). For the S5 state we obtain τ ′ = 9.73, and 

Separating the parameters appropriate for the state 5S, and taking t1 = 0.5, we obtain

 

Using the function ψosc,5(t) in the form ((52), manuscript)
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We obtain the total normalized emission (99), for the 5S exciton, in the form 

and N05 is a normalization constant. As can be seen from the above equation, the function X(W) has a Gaussian shape, with X(12) = 
0.277 and the maximum at W 90. Than the function decreases to X(150) = 0.468.
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