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Abstract
Basing on recent reliable measurements of the life- and coherence time of Cuz0 Rydberg excitons, we present an analytical
method which enables to describe the experimental results. The real-density matrix approach (RDMA) is applied to describe
two-photon absorption in Cu:0 through the excitonic response to the exciting fields. This approach produces an analytical
expression for the emission intensity time evolution, and can be used to explain trends in reported experimental data. Our
approach takes into account the effect of the coherence between the electron-hole pair and the electromagnetic fields, the
quantum beats and the life- and coherence time dependence on the applied laser power. Adding a separation of slow- and rapid

dynamics components we find excellent agreement with the experimental data.
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1. Introduction

Since the first observation of Rydberg excitons (RE) in Cu,O [1] they become a subject of intensive studies [2]. The research started
from optical properties of REs in natural crystals, then it evaluated towards REs in low dimensional nanostructures [3-5]. Both linear
and nonlinear optical properties were examined. The theory, so far, is well-developed and the theoretical results agree well with
experimental findings. The majority of experiments and theoretical considerations on the optical properties of Rydberg excitons was
devoted to excitons created by a harmonic-time dependent wave of the type E(r, t) = E; exp(ikr-im?) where E is the electric field
vector, o the frequency (circular frequency) and k the wave vector. Since the optical functions are represented by time averages,
they remain time independent, and the exciton (exciton population) time dependence was not discussed. Recently, the trend changed
to experiments and theory on the dynamic processes [6,7], where excitons are created by pulsed excitation. The exciton population,
created within a finite time, decays then with a time constant, which is related to the so-called exciton life time.

The relevant equations on excitons created in stationary way contain an number of parameters, and most of them are known (for
example electron- and hole effective masses, quantum states oscillator strengths, energy gap, dielectric constant, exciton Rydberg
energy etc.) However, there is a one important parameter, which is not exactly known. It is the above mentioned exciton lifetime
of a quantum state n (notation 7, , 7 ), which corresponds to an energy 7' = h/T, , also called the damping constant (homogeneous
broadening). The coefficients 7' represent dissipative processes that, in general (and we will see it below) are energy and temperature
dependent [8-10]. The topic of calculation of exciton lifetime has not been covered yet. There are some estimation, as, for example
T oc(n?-1)/n° [12] which gives the tendency T =cn’. Very often the damping I" was assumed as a free parameter, and was determined

by fitting experimental results, thus in an indirect way.

In a recent paper the authors reported on a direct measurement of the lifetime and coherence time of Cu,O Rydberg excitons up to
principal quantum number n =9 [6]. They used a method, where a degenerate two-photon excitation (2PA) generates a one-photon
emission at twice the pump energy. They used short (a few ps) laser impulses and the exciton lifetime exceeds the impulse duration.

When the impulse vanishes, the excitons decay for each Rydberg state. The slope of the decay rate gives directly the lifetime t, and
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coherence time t_, by the relation t_, = 2t. During the decay process one observes oscillations (the so-called quantum beats) due

h
to the interference of the neighboring exciton states. In addition, in the dependence of the lifetime on the laser pump power and
the probe temperature, is measured [6]. The general tendency is the decrease of the lifetime with the increase of the pump power

(temperature).

Since a two photon excitation is a nonlinear process (a x® process), in the theoretical description of the above reported process we
advance the application of the real density matrix approach (RDMA, also called coherent wave theory). This approach has been
successful in describing linear and nonlinear optical properties of semiconductors in terms of Rydberg excitons. Recently it was
used in the theoretical description of two photon non-degenerate absorption in silicon, in the case of stationary excitation [11].
Here we extend this approach to the case of degenerate 2PA and finite-time excitation impulses. As compared with earlier works
on the application of RDMA to Rydberg physics, the RDMA scheme is supplemented by quantum beatings equations, time-scale
separation, and the dependence of exciton lifetime on applied laser power [12].

The paper is organized as follows. In Section 2 we recall the basic equations of the RDMA, adapted to the case of degenerate
2-photon absorption. In Section 3 we explicitly derive the formulas for linear and non- linear susceptibility for a Cu,O crystal,
irradiated by a finite-time pulse. Next, in Section 4 we calculate the exciton life- and coherence times and other parameters needed
for intensity calculations. In Section 5 we derive the final expression for the nonlinear time- dependent 2P emission intensity. Finally,
in Section 6, we present the Fourier transforms of the theoretical emission intensity. The Appendix contains details of the presented
calculation.

2. Two-Photon Absorption in RDMA Formalism

2.1 The Constitutive Equations
In the RDMA approach the bulk nonlinear response will be described by a closed set of differential equations (“constitutive
equations”): one for the coherent amplitude Y(r, r,) representing the exciton density related to the inter-band transition, one for the
density matrix for electrons C(r , r,) (assuming a non- degenerate conduction band), and one for the density matrix for the holes in
the valence band, D(r, r,). Below we will use the notation

Yr,r)=Y,, etc, )
The constitutive equations have the form: the inter band equation

Y]
in 5;2 — HepYi2 = —ME(Ry2)
: 4 . ay’12
+ E]_MU(/]_Q + EQMoDlg + ih - 5 (2)
ot irrev

conduction band equation

ac . ¥
()1‘12 + HeeCra = Mo(E Y1 — EoY5))

. (0Ciz
h s 3
o ( ot )irrev ’ ( )

ik

valence band equation

., 0D .
ih 8t21 — HppDa = Mo(EoY12 — E Y5))

7 aDgl
- h ( at )irrev 1 (4)

where the operator H,, is the two-particles (electron and hole) effective mass Hamiltonian

Open Access J Phys & Math



https://openpubglobal.com/journal/open-access-journal-of-physics-mathematics-issn-3068-7527-

o, h?
Hop=Eg— 0%
e 2Mm ZMMVRH
ik
- —02—— e 5
I V + Ven, (5)

with the separation of the center-of-mass coordinate R from the relative coordinate p on the plane x — y,

h2

Hee = “om (V% - Vg)
n? 2 2
Hypp = _ﬂ(vl —Va), (6)

and E,, means that the wave electric field in the medium is taken in a middle point between r and r,: we take them at the center-of-

mass

R - Ry — mpry + merg. (7)

mp + me

In the above formulas m , m, are the electron and the hole effective masses (more generally, the effective mass tensors), M, | is the
total exciton mass, and p the reduced mass of electron-hole pair. The smeared- out transition dipole density M(r) is related to the
bi- locality of the amplitude Y and describes the quantum coherence between the macroscopic electromagnetic field and the inter-
band transitions [4]. The terms (0Y/0t),  etc. describe the irreversible dissipation and radiation decay processes due to all dephasing

processes. The resulting coherent amplitude Y12 determines the excitonic part of the polarization of the medium

P Hat] = 2/- A3 M*(r)Re Y(R, r, 1)

= /d37-M*(r)[Y(R, Esi) i85 (8)

where r =T, - 1, is the electron-hole relative coordinate. Having in mind experiments described in [6], we consider a situation where
the irradiating electromagnetic field E includes two frequencies o, and o,, and is written as

E = eoF(t) {501 exp(ikiR — iwit)

+ € explikaR — iwot) + C.C.-‘ : (9)
with the envelope function F' (¢) (the impulse shape, the definition will be given below), and
k| = e(wj) = ”JM; J=12 (10]

and n, are refractive indices at the frequencies op

In the following, we consider only one component (A)_ of the vectors E, P and M. The linear optical properties are calculated
by solving the inter band equation (2), supplemented by the corresponding Maxwell equation, where the polarization (8) acts as
a source. For computing the nonlinear optical properties we use the entire set of constitutive equations (2-4). Although finding a
general solution of the equations is challenging, in special situations a solution can be found. For example, if one assumes that the
matrices ¥, C and D can be expanded in powers of the electric field E, an iterative procedure can be used. In general, solving for ¥,C
and D in the context of two- photon absorption depends on the relation between the incoming frequencies o, ®, (and thus energies

ho,, ho,) and the fundamental gap energy E, which enters as a parameter in the electron-hole Hamiltonian.

We consider the case, when

ho, + ho, < E, the excitation of discrete excitonic states is possible.
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2.2 The Iterative Solution of Constitutive Equations

Our goal is to derive expressions for the two-photon absorption coefficients. These can be obtained from the third-order nonlinear
susceptibility, which, in turn, can be determined via an iterative procedure within the context of the RDMA. To apply the iteration
procedure we assume, that the relevant quantities P, ¥, C and D can be expanded in series of the input electric field amplitudes. The
considered inter-band transition is composed of two steps. The first step starts from the initial state £, (here the maximum E of the

valence band) to an intermediate (virtual) state f, the second is from the state § to the final state £ x (the minimum of the conduction

band £ . The first step in the iteration consists of solving the equation (2), which at this stage takes on the form

oy ) (i oy (1)
i—— —HYY® = _ME +in | —— (11
1 ot " o ot irrev ' ( )
where E has the form (9). The Hamiltonians /,, are defined with regard to the two steps of transition described above:
Hl,eh :EB — Hynte Floe (12)
HZ,eh, :Ec—Eﬁ—l—Hr, (13)
2 =
j: (2) v, (g) V., + V(r), (14)

"where U is the exciton reduced mass tensor for given pair of bands

C and V, and V(r) the dielectrically screened electron-hole Coulomb potential, E 5 is the energy of the virtual band, and EE
correspond to extreme od valence and conduction bands". When considering the time evolution of the exciton population, generate
by the impulse (9), two time scales should be accounted for. The processes of exciton creation are rapid processes, on the femtosecond
scale. The time characterizing the decline process of the population is proportional to the lifetime t, which is of the order t < 20 ps,

i.e. is a slow process. Therefore the amplitudes Y, will consist of two parts

V(e t) = Y0 (0)Yo(x)e ™t (15)

slow

For the irreversible part we assume the simple form

oy ) -
( o ) == T (16)

As follows from experiments, the decline of excitonic absorption is governed by the rule X €XP(—/Tr4m ). To obtain this behavior,
we distinguish slow and fast changes (in other words, two time scales) in the excitonic amplitudes ¥ and matrices C,D. With regard

to (9), we put into (11), obtaining

Y’(l) _ Y'e—iwt (17)

dY N o i ke
T iwYe 4 5 T it}

e dYy i .. W .
¢ '(']r) _. __}h.*'n‘h 'AMr). (18)

, dY dY i =
i(2ep —w)Y + = (1“) | :h.’-lll_\.flrl.

Taking the 2 steps in 2-photon process, we have two pairs of equations
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ih [-._~. + l] Yy, - HYYY = -M&,, (19)
ih [--iq - -}] ]'-I'—:I - ”,I_;'l'_.'_“ = —ME&n.

o . (1) . o . .
with similar equations for Y2+ M is the relevant component of the transition dipole density. Now we separate the slow and rapid

processes, by putting

YO = Yoib ()Y

slow
(20)

. (1) .
In what follows we consider only the resonant part. The parts }‘L} j— correspond to rapid processes, and have the form

Y(l) r) =& Cn!?m‘fonfm(l‘) )
o-(F) = £on %ﬂ Ep + Enem — hwy — A7 3

o B (‘ngm%’ném(r)
i) 502% B Bt By A

Eﬁ = F, + hw. (21)

where EE are the extreme of the valence and conduction bands, respectively. The coefficients ¢ ., and eigenfunctions are defined

as follows
Chimi= fcle'-rﬁf(r)(pngm(r),
Prbm = Rﬂf’(r)}(}m(ﬂs ¢)‘ (22)

Y, are the spherical harmonics, R  are the radial functions of a corresponding hydrogen atom-like Schrédinger equation,

Pntm (I‘) = Rnﬁm (r)}/ﬁm(ga @‘?)- (23]

where
¢
_ 2T
Rn@m('r) = -Z\"nf (M—*)
na
et 5
x M ('n felet 1 2= 2; ?Z*I) e mem/nat (94

N L (n+o) 1Y (2\*?
T @er ) [ 2n(n— 0 — 1) n)

In the above expression M(a,b,z) is the confluent hypergeometric function. The energy eigenvalues related to the eigenfunctions

(23) have the form

.ng
Enfm - _?R ’ (25)
Where
N TR 1 U I
m=—l,—0+1,..,+C, (26)

R is the effective4 exciton Rydberg energy for the exciton
R* — Hje
2(47reoeb)2h2’ (27)

the anisotropy parameter y is defined as
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i
iz, (28)

fy:

) and fzare the heavy hole exciton reduced masses in the x-y plane and in the z-direction, respectively,

1 1 1

I” 'nle” 'ITth ’

1 . i,

oSN . (29)
Hz Mez Mhz

o 1s the vacuum dielectric constant, and "/“*'* are relative dielectric tensor elements. The quantity 77¢m (77 )is given by the following

expression [13]

27 ™ | |2 00
, Yem|® sinfd
mn() = [ do [ B4 | (30)
V/sin? @ + ~ cos? #
0 0
With regard to (25), the excitonic resonance energies result from equation
ETnEm W Eg En Enfm- (31)
The slow part Ys(iloiuslow satisfies the equation
Wiow [ Veiow
— = F'(t), 32
:t s ) =F(). (@)
irrev

as previously, F(2) describes the exciting impulse profile, and

43}'”;. .
( l‘l‘:"" " ﬂ‘ .-l||l|-:h' ¥ .i-! A
irrev

where, to simplify the notation, we put & = 1 / Tném - Equation (32) can be solved by means of Green’s function, satisfying the
equation

dG(t,t'

012 +oG(t, ") = =d(t —t), (34)

dt ’
with the solution
1 /
Bt = T, 35
(t.1) = 5 (35)

Thus, the solution of (32) has the form

vio = [ Fecenw. @

As follows from the definition of 7, Ys(lcl)zv slow will be labelled by quantum numbers n,/;m.

2.3 Coherence Time and Exciton Life Time
The values of the above mentioned exciton life time can be taken from experiments [6] Table 1.) We can also estimate them, using
the relation between the coherence time and the exciton life time. Coherence time is the time duration over which the medium
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Figure 1: Exciton lifetimes, directly measured S states lifetimes [6] (blue dots), in good agreement with the
n2.7 scaling (black dashes), up to n = 6,(42), for n > 6 good agreement with scaling (43) for S excitons
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Figure 2: The same as Figure 1, for D2 states, for n < 6 in good agreement with n3 scaling, for n > 6 good agreement with (43) for
D excitons

impulse response is considered to be not varying. The coherence time, which we denote as t_,, is calculated by dividing the

oh’
coherence length by the phase velocity of light in a medium; approximately given by
1 A4
Teoh = —— &~ .
0 Av  cAX

(37)

where A is the central wavelength of the source, Av and A is the spectral width of the source in units of frequency and wavelength

respectively, and c is the speed of light in vacuum. Identifying the variation of impulse response with energy difference between

neighboring exciton states we obtain (without specification to S or D states)

oh
En+1 - En 1

(38)

Tcoh,n =

where 6 is a certain parameter. Below we take the values 8 = 19.7 and 6, = 19.73, 6, = 18.72, for S and D1,D2 excitons,

respectively, which give a fairly good agreement of theoretical and experimental values of exciton life times. If the energies are

given in meV, we obtain the result in picoseconds
20h

R 39
Teoh, En+1 _En ( )

On the other hand, we have the relation
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Teoh,n = 2T, (40)

T, being exciton lifetimes. By equations (39, 40) we obtain the lifetimes

dsh ds hn?(n +1)2
Tnoo = — . 5
Eni100 — Enoo  R*dp(2n+1)

(41)
oph Op h?I-Q(?I-—F 1)2
Ent122—Enoa R*n3,(2n+1)°

T2 —

The results for the S states 2 <n <9, and D states 3 <n <9 are given in Tables A1 and A2. We observe a fairly good agreement with
the experimental data for the states n < 7. In this interval the lifetimes scale approximately as

T0 = Tos X 077, S excitons

21 = Topy X 17, D1 excitons, (42)
22= Tome & n’, D2 excitons,

T

T

=0.151

op1 0D2
used in [14]. The expressions (42) correspond to the scaling with quantum defects [6]. As observed in experiments, the values of

where T,s=0.13,7, = 0.11. The formula for D2 exciton is identical as the formula for the case of P excitons in Cu,O

lifetimes for n > 7 arrive at a plateau. For higher states states we observe a slow increase, tending to a value 700, The scaling in this
interval can be described by the formula

Trn00 = TS = Too § (1 — (‘7"3)‘5) . S excitons.
(43)

3 .
ThD1,2 = Too D1,2 ((1 —e™" }‘Dlr?') . D1,D2 excitons.

The results, for

T00S = 22.89 ps, AS =536 x10-3, (44)
To0D1 = 23.65 ps, D1 =5.386 x 10-3,
wD2=23.14ps, 25, A, =6.6x 107, (45)

are given in Tables A1 and A1. The above data include the splitting into D1 and D2 excitons. The switching between the increasing
of T (those decreasing of intensity) can be explained as follows [15]. As we have shown above, the absorption spectrum for energies
below the energy gap consists of a series of lines at energy values (31) with intensities decreasing, roughly speaking, as 1/n* (those

exciton lifetimes increasing, see (42)). For high values of the quantum number # (i.e. for energies just below the gap), the density

of exciton states per unit energy is

B 2('}1’1, B 3
- "OE R+

D(E) (46)

and, since the density decreases as 1/n’, we obtain a finite limit in the absorption coefficient, represented above by the quantity t

002

for energies near E,.

2.4 Quantum beats

In experimental intensity curves shown in Ref. [6] some oscillations, also called quantum beats, around the smooth shape determined by a function F'(?) are observed.
There are several types of oscillations, with different frequencies with different periodicity and amplitudes. As we show below, the oscillations are due to interference
between quantum mechanical waves, generated by neighboring states, in the region of an exciton state n (S or D). Consider, for example, states [300>, 1322 >, and
1400 >, denoted further by 1,2, and 3. The state of the system is described by three waves

Y(r,t)=a1y1(r)exp(-iQ1t) + a2ip2(r)exp(iQ2t)
+ azp1(r)exp(iQst),  (47)
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where a , a,, a, are real numbers such that

a?+a2+a2=1, (48)

w;(r), i = 1,2,3 are real valued functions, and

Ey Ey _Es

M=— Q=20 Q== (19)

h k]
The density of probability, that the system is in a non- stationary state described by (47), is given by
p(r.t) = afui(r) + a3y3(r) + afy3(r)

+ 2aya11 (r)ha(r) cos(§212t) (50)
+ 2aya3?hy (r)s(r) cos(3t)
+ 2aga3ths (r)ths(r) cos(Qast),
where
o B E;EJ (51)

The quantum beats are attributed to transitions between neighboring S and D states |#00), [n22),

|(n + 1, 00). Their periodicity is given by the equations

- 21h
bS.i ’
S Eroo — Ent1,00
21h
T, bD,i 5 52
o En2 — Epniq,22 62
2rh . 1
TgpSDi = |77/ |» t="1, N ;
P25 | Eigo — Enao

The impact of quantum beats on the exciton spectra will be described by expressions of the type (50). The over-all expression for

the oscillating

—4d
- - -4d exp

0.8

0.6

0.4

0.2

Figure 3: Linear time dependent emission, showing quantum beats for 4D2 excitons, the experimental curve from [6]
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Figure 4: Linear time dependent emission, showing quantum beats) for 6S excitons

will be described by expressions of the type (50). The over-all expression for the oscillating terms will be taken in the form [6]

Pauemilt) = % 14 Z @jn c0s(2jnt) | (53)
J

where j runs over the inter-exciton states transitions starting with nS(nD) accounted for. The quantum beats amplitudes q,, are
proportional to the quadrupole transitions moments Q. given in [8],

l'( L s
djn = ;:: ' fﬁJri = Z{r\.})n- ':*'h”
; J

3. Linear and Nonlinear Susceptibility

3.1 Linear Susceptibility
The above consideration allow to calculate the total excitonic optical response in the 2 photon absorption process. This will be

obtained by means of linear and nonlinear excitonic amplitudes y‘(l) (t) and Y-(S) (t)
i e o '

The linear amplitudes have the form

Y(l) )= & cnl?m‘fnnf‘.m(r)
1= (1, 8) = Eou ; Ep — bt + Bt + /Tt
X T#‘I"'a.sn::,n'EWL (t). (55)

. 1 .
with analogous formula for " YQ() (f). We use" the notation

oo

(G, t)F () = f G(t,t)F(t)dt. (56)

— 00

The solutions for Yj(i) ()determined above allow the calculation of the linear polarization being a function of time ¢
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P (wy,west) = j d3r {YS) —|—Y1(Jlr)* M*(r)

+ f @ [v2 + viP"| Mo (r) (57)

= eoxM(w1;t)E01 + cox P (wa; t)Eos,
where

K0@158) = 2 3 {nenlt) Gt 1. )P ()

nfm

5 ‘Cnfm‘g(Eﬂ,Em +Eﬂ) }
(Eﬁ + Engm)Q e = h2(w1 -+ i/Tngm)Q

(58)
XM (w3 t) = % > {wm,n(t)(engm(t, t"YF(t")

nfm

% |Cn3m‘2(EnEm + Eg) }
(Eg ol E":r"zﬂfm)2 = ?_L2[(L{J1 i wQ) + i/Tnﬂm]Q '

3.2 Nonlinear Susceptibility

In order to obtain the nonlinear response, the solutions for ‘.-”jfi’(f} (not ‘}’jf:jﬂ(t))‘ are inserted as a source term in the conduction
band equation (3) and the valence band equation (4). Note that each of these equations depend on the electromagnetic field. If the
irreversible terms are well defined, the equations (3,4) can be solved, and this second step of the iteration yields expressions for the

density matrices C and D. We use for the irreversible terms a linear relaxation time approximation

(aaf‘)irrev (59)
_ 1 B C(0)
=T [C(X.r.t) — foe(r)C(X,r=0,1)] — SR

"where X = (r +r,)/2, T, is the carrier relaxation time, and £ , f,, are normalized Boltzmann distributions". for electrons and holes,

respectively,

Tl == f B oo (q)e (60)
— (_"‘”ﬂ“‘“BT > Mz)

onz F o2

where k, is the Boltzmann constant, and T the temperature. The same type of expression holds for the holes. From (59) one obtains
the solutions in the form

C(r,t) = _%Tlfﬂe(r)JC(O)a
D(x,) = = T4 fon()p(0) (61)

where we present an approximation following from the assumption 7 s 77, . The sources terms J ;; J | are defined as
Jo = M€ (Y12 — Y75)

= 2iMyF (t)|Eo1|*[Im g(—wy, 1) + Im g(wy, T)]

— 21’M’gF(i)|802|2[Img(—wg,r) + Img(wa, 1), (62)
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where

Cné'm(pnﬂm(r)
e r Z Eﬁ + Efn,fm = h&)l = E"ﬁf/lra’ni"m.

nfm

X (G(f. t’)F(t’))wasc,nEm

(63)
Cném'¥Pnbm (I‘)

= Eg+ Engm — h(w1 + w2) — ih/Tnom

X TGV () Poscyntm:

g(—wa, 1) =

andJ =J,. The above expressions can then, in turn, be used as source term for equation (2), which can which can be solved to obtain

expressions for Yl(eé) iin the final step of the iteration. Now the equations for the third order coherent amplitudes Yj(i)have the form

m(lwl+ )YB) Hy YO

= My(E*C + E*D) = E*(R,t)J,
(64)

ih (—m 3 1) v® _ H,Y®
T

= My(EC + ED) = ER,t)J,

with similar equations for V3¢ where

J= —%Mo [Ty (0) foe (r) + T1.Jv (0) for(r)] . (65)

Equations (64) will be solved by using the same method as in the case of linear amplitudes Y. We put Y® into the form
y® — y®) Y(3)( 7. (66)

slow

In analogy to definition (21), the stationary part of Y® will be assumed in the form

Y{S) = ol y)\p: l(roy)xy,( ) )
OIZ Eﬁ —|—EV)\M ﬁwl—ﬁﬁ/ﬂ,)\‘u )

d Pyau(T)
Y(3) g vAp,2¥vAp
(r) = &o2 2 E.—Eg + E,x, — hws — ih/T,5,’

E'B =F, + hw;. (67)
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If neglecting the anti-resonant terms, we obtain
iMoT | . .
dnwt = = ({92l Joe) + (Pr| fon) 2 Evns + E5)Jc(0)
iMpT, P =
— i [(@ruvlfoe) + (@l for)2(Euns + Es)

. h & Zntm(l)
D 2 mlrn 'y nlm
-'-”l1'|E'lll| Z Tolm {I'-.‘i -+ -r"lr-fm }2 m "'2[-‘-‘1 -+ ':Jgrnfm }-2.

b4
nifm "

= —M§(Aru + Bryu M Euru + Ep)

’ T; CrtmPnim(U)

2 1 Frr'y mall
§ Ia”' u-"zm rﬂn‘m ‘P:,'f + J:-‘ufrn:! = -’lz{-'-ll + i.-'.lrﬂfrll '2.

(68)

dypra = —-L”(.f[.'h"p + ”AHPIH'::—A," + !;‘y}

: -fj Coal i .rn\'m'”}

2 ¥
= iar}l z Tﬂrlll I'F':Q' + 'F'::I'Iflll IE - hz{"“l + "'-2 + illllr"fﬂl }21

nfm

where

A)\.uy — (@Apylf[)e)}
B = {(pauw|fon)- (69)

The slow part v satisfies the equation

slow

drel  farl o
sow —(Sdlow | = F(0)(G(11)F ().

Vsl o JEn PR )

slow

From Yl(i)(t),Yz(i}(t) one finds the third order
polarization according to

PO (wy,wart) = f d3r [YE) ¥ Yl{_ﬁ)*] M*(r)
+ ] & [v () + Y0 (5)] M) (70)

= eox® (w1, 1)|E01|2E01 + €0x® (wa, t)|E02|*En2.
where the nonlinear susceptibilities have the form

P (wy.t) (71)

i 21""& Z ",\j.nf:-'!}.;iy + I;Jqu.a HI:.)\‘uu + Hs]
(Eg + Expe — han)? + (h/7a.)2

€p
Ajais

Tll Crfm'Fnlm ["]

x = 3 r s
Tnflu :J'-f,'l -+ I:'uﬁﬂ]) e h?{*-l. + ”{Tuhn :2

nfm

% (Gt " )F(t"))(Grem(t”, f'}i'{f'}}a-f_,__m(f L

P (wa. ) (72)

. -’.‘If"lz z '.APP(GFI,\“” + !}IPFHJ‘:‘U.\" + l'fg-}
£ W !f‘.‘y - EJ!;-II-‘ — (Mg + fi.d;zl]?' + ”!I."".I'Alw )2

'.rl, "rll'm'r-n-fm{“:l
: z Tnim ‘f-".q E B f“‘flfrlljz T ’Izi'l-.l + 'l-.‘z + ip'(rhfrn :2

nim

X {{'lli-l:'{f- !" JI“‘"]) ((:Jlf"l t""- *’JI[,J]] I“?mr.nfﬂl‘* ]
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The formulas (71),(71) are the basic formulas, which describe the properties of 2PA excitons, excited by finite-time laser pulses.

4. Results on Exciton Lifetimes and Other Parameters

4.1 Exciton Lifetimes

We have computed the emission dynamics of Rydberg excitons in Cu,O created by two-photon absorption. We used the Cu,O band
parameters, collected in Table 1. The first step in the calculations is to establish the

Parameter Value

E, 2172.08
o =696

ArTs 5x 1072

M, (.99

1y, (L5587

Mhs 1.99

", 0.672

i* 1.1

Table 1: Band parameter values for Cuz0 from [13], energies in meV, masses in free electron mass m0, lengths in nm, ALT from
[16]. lifetimes of excitons for various exciton states, where we considered the even states S and D. Those lifetimes were measured
in [6] and we formulated equations from which the lifetimes can be calculated, for various intervals of the quantum number n. The

results are shown in Table A1, and illustrated in Figures 1 and 2. The mentioned above two features of the dependence on the state

number, the increase of the lifetime for » <7, and a transition to plateau for n > 7, are visible.

4.2 Quantum Beatings Periodicity
To explain the oscillations around the envelope describing the excitonic emission delay, the periodicity of these oscillations (quantum

beatings) should be calculated. We use the equations (42) and (52). The experimental findings and results of the calculations are

presented in Tables A3 and A4.

4.3 The Dependence of Lifetimes on Laser Power and Temperature

The exciton life time is related to the damping constant I, being also the linewidth, by the relation

T = T (73)

The quantity I' depends on temperature by relation [10]

D(T)=To4+v4cT +voo [exp(fwro/ksT) — 1]71 .
(74)

where the term v, T is due to exciton scattering with acoustic phonons, and term nonlinear in temperature is due to interaction with

LO phonons. The coefficients v, . and v, ,represent the strength of the exciton- acoustic phonon interaction, and exciton-LO phonon

interaction, respectively, while the term I’ is the low- temperature limit of the line width. As can be seen from (73,74),
== iZal; (75)

which means that the life time decreases with the increasing temperature. By given parameters v, ., v, , one can derive an analytical

expression for the dependence 1 (7). The values of coherence times for increasing power can be obtained by the relation

Teohn = Toexp (nby — n’by — Whs) . (76)
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The coefficients 7, b, b,, b, (7, in ps, b, in 1/mW)
b,=0.98, b, =0.04,
b, =6.6 x 10-3, 1,=0.394, (77)

were obtained from fitting experimental results from [6]. The dependence of exciton lifetimes on state number and laser power can
be compared with the dependence on temperature and state number. Having in mind the experiments [6], we consider the S states n

=5, 7 and calculate the lifetimes as function of temperature for the given states. We use the formulas.

Tl T) = Toexp (n':rl -1 =, T) '
Yas = 0.0188, 737 = 00376, To~3x 107
W = 2.592, e = 0.192, (78)

The results are presented in Table A6.

4.4 Exciton Oscillator Strength

The oscillator strengths for the exciton state In/m> are defined as
2

/dSrM(r)cpngm(r) ) (79)

fnfm e

For further discussion we must define the shape of the transition dipole density M. Since we consider only one component, we take
a scalar function. The shape of M depends on the considered exciton symmetry. For simplicity, the S exciton function M is assumed

in the form

ﬂ".{n 1

M(r) =

d(r —rg), (80)

where 1, is the so-called coherence radius [13], and the coefficient M, is related to the longitudinal transversal splitting energy. An

example of the latter is the integrated strength of dipole moment M| for S excitons, obtained from the equation

o
Az, (81)

eoepma*h?’

Arrs
R*

—:i)

&

The results for S states

3 n(n — ngoro/a*)2(»—1
f100 = Moo 10070/ 2() 5 (82)
(1 + nogro/a*)2nt

are displayed in Table A7, for the appropriate 1, value. For comparison, we show the oscillator strengths for the isotropic case (m,,

= 1, 1, <<a") (“pure”), which obey the scaling law f, o 1/n’. The results for 1), 6= 1 show a deviation from this law

Jooo 1
i~ pEE

TR (83)

For the D excitons we use the transition dipole moment in the form [13]

M(r) = ﬂ.fw%e—f/ (84)

For the considered 1n22> states the eigenfunction can be put into the form

I Y 222 1\’ 1297
Pn22(r) = NnaYas(6, 6) ( :fg a_*) =k (_ :32;* ) ‘
(85)
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where N are the normalization constants, which enter into the definition of /) oscillator strengths

21220
i 2

4
Fom— N0, ( ) exp(—2maapo/n).  (86)

Their values are listed in Tables A7 and A8. As in the case of S excitons, we show the “pure” values of f, obtained for »,, = 1, and

given by the relation formula

N1\ (n+2)
s == (= t.
Sz (n) (5!) 2n(n — 3)! e

const = M&pa x 1074, (87)

4.5 Dependence of A and B on the Laser Power
The coefficients A, B, defined in equations (69), depend on the temperature by definitions of A’s

2 1/2 2 1/2
Athe = B y Athh = B :
B mekpT ' mpkeT
(88

They coefficients for hole are determined for the appropriate masses (Il or z), and have the form

v M 1 ( 21y h2 )1/2
the — — _—  — —~ m—

a* a* e(200) kBT
_ (y BN
mokpT ’
1/2
X _ )\m i 2y h? i
th hz nihz(Qlﬂll)kBT
W o 172
- '“”R / (89)
N?hz}uBT
A Ath hll ooy N2
Hak] == mh”(Qy”)kBT

— (2_“'I|R* )1/2
mh”kBT ’

The electron effective mass is assumed to be isotropic. As stated in [6], the dependence of coherence and life times on the laser power
is equivalent to a dependence on temperature. Therefore we must calculate A’s (89) for various temperatures and, correspondingly,
for various laser powers. Since we will use the quantities A;B in calculations of the excitonic emission of exciton 5S state, we will

focus the attention on the quantities 4,;B, . Their calculated values as function of temperature/laser power are displayed in Tables

A9 and A10. We observe that these quantities are decreasing with the increasing temperature /laser power.

5. Nonlinear Time Dependent 2P-Absorption Coefficient
Having linear and nonlinear susceptibilities, we obtain the total susceptibility by the relation

X(w1 + wa3t) = X(l)(wl-.f-) + X(l)(wmf)
+ x® (w1, 1)[E01|? + X (wa, t)|Eoz |2 (90)

Since the contributions of terms related to ®,, ,, where we take o, = ®,, are equal, we denote ®, + ®, = ®. The imaginary part of

(90) defines the nonlinear absorption coefficient
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Qpor = 05(1)( ) & Q-(S)( )lEpT0p|2

A — %Im NGY (91)
huw
a3 = EImX(E’).

where [E__2=1s 11> =1s 2I°. Having in mind the experiments[7], we will consider the absorption for a given exciton state n/m. Using
prop 0 0

(81) and (58), we obtain for S-states

5110)0( —055110)0(0 t, t F(tf))"vbosqnﬂo(t)a (92)

where
n FTL
5110)0 = _\/_ALTSf 002 LA
2E% 00 (93)
For the nonlinear contribution we obtain
2;‘.!2 cald, + B ) E, + E)
(3) i 0 bn ri 1 e 0
X (w, t) = = 2
}{ ﬂ r-'!iprr[ﬂ}l:Er: + ?Irrr}
T 2E4(EZ +T73)
= I:":::'Trr “‘1 t"] F{tﬁjj I{f:;‘rr: “H' tlr} F{}d}} ir'-l'IEm?.Fi {f} (94-)

Similar expression holds for the D-exciton contribution.

(3)
@r00 obtained from the imaginary part of (94), has the form

aff) = —ai xn prop|”
X (Ga(t.t")F (") (Cn(t" 1) F(t)¥Gsen(t),  (95)
1 T

Xf{g’y = EOEbALTsa*S 00) (A, + B,).

a7 ol
We use the relation
|Epropl? = 6 x 10°W, [W] =mW, (96)

appropriate for 20 umlaser spot diameter, and separating the parameters appropriate for Cu,O,

obtaining for nS states

a® = inr{ (:-_l) [en(po)(An + Ba)]
x 2.745 x 1078 ( " ) x W (97)
oo
X (Gu(t, ") F (") Gu(t", V) F(t' )2, n'[f}}
where
t1 = 10_3T]_.

In calculations we use a Gaussian shaped normalized pulse

1 i
Bty =Fnne———— —— ], 98
0= Fras e (~55) . 09

Absorption

coefficient
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where T, is the pulse temporal duration. Using this shape we calculate the expressions G (t,t’) F(¢’) and, in a lowest approximation,

we obtain the time dependence of the normalized emission in the form

x {1~ X&' W™ [00(00) (An + Ba)lonein 1)}

(99)

where N are normalization constants
t n 4

X = (—1) (—) 2.475 x 1078, (100)
T 700

The theoretical results are illustrated in Figure 4 for 5S state and three values of the applied laser power. We observe an exponential

decay, governed by the exponent —1/7, and quantum beats. The details of calculation are given in Appendix.

6. Fourier transform

Having an analytical form for the oscillating functions ¥n.0sc(?)one can easily calculate the Fourier transform of these functions.

Using the standard definition

() = — f f(z)ei€7dz,

B V2T
and substitute t — =, ¢ — wwe obtain

flz) = Z ane_“‘“‘$| cos(£2, 1),
J

Op = —.
Tn

where j runs over the considered transitions. Then
q jn
F,(w) x . 101
0 Y (101)

The above expression will be applied for the cases of 4D and 6S excitons. In the case of 4D excitons we use the frequencies

corresponding to the transitions n S —n,D, where n = 3; 4; 5, and n, = 4; 1; 4; 2; 5; 1; 5; 2, which are displayed in Tables A3 and

A4. With the above data we obtain the expression for the Fourier transform for 4D

) 00476
Fpy -'-’-“-'-"[l } —— —
1 + 7000{r — 0.06)2
0.32 0.397
1 + T000{ — 0.207)2 1 + TO00(r — 0.28)2
0.105 0.132
1+ T000(r —0365)2 ' 1+ T7000(r —0.295)2 |

For the 68 excitons we obtain
n 0.5 0,345
Fse =1 lII +3047(v - 0.09)2 7 1+ 3947(v — 0.09)2
0,079 (0, (M5
T 1+ 3MT(v — 0.134)2 T 1+ 307(v — 0.178)2
0.007
4 - 1. 02
1 4+ 3947(v l|_|.--|'-’“ (102)
The corresponding Fourier transforms are presented in Figures 6 and 7. In both cases the factors were chosen to be proportional to
the transition quadrupole moments for n;S —n,D [8]. The numbers 28.2 in (102) and 14 in (102) give the fit to the transform obtained
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numerically from experimental curve. We considered the quadrupole moments for the transitions n S —n,D, states, due to the
symmetry properties of D,. The state D is not a pure D state, but reveals a mixing with nearest P state [17]. Therefore the quadrupole
moment for the transition n,S —n,D, has a smaller value than the moment n,S—n,D2. We assumed the rate 0.8, which of D2. The
state D, is not a pure D state, but reveals a mixing with nearest P state [17]. Therefore the quadrupole moment for the transition
n S — n,D, has a smaller value than the moment n,S — n,D,. We assumed the rate 0.8, which corresponds to the experimental
observations. For the D4, 1— D4, 2 we used the quadrupole moment for the P4 —S4 transition, due to the above described mixing
of states. We observe the property mentioned in [6], that the oscillations are typically dominated by a main frequency accompanied
by few others of smaller amplitude. It is due to the structure of amplitudes qjn (54), where the major contribution comes from the
state transitions nS — nD2 for n < 5 and nS — nD1 for n > 6, see also Tables I, II [8].

ety |8y

Figure 5: Linear time dependent emission for the state 5S and three applied laser powers

7. Conclusions

This study contains derivation of analytical expressions describing the direct measurements of lifetimes of the even series of Rydberg
excitons in Cu,O. We obtained formulas which show the power scaling laws for excitons S, D1, and D2 for the lower exciton states
(n <6) and a saturation effect for n > 6 states, explaining origins of this effect. Using the real density matrix approach, we derived
formulas for the time dependence of linear and nonlinear susceptibility, under action of pulsed excitation. Both susceptibilities
show the effect of quantum beats. The time evolution shows an exponential decay, governed by the exciton life time. In addition,
we described the lifetimes dependence on the applied laser power and the crystal temperature. Having analytical expression for
the nonlinear susceptibility x(3), we can calculate the nonlinear refraction index n2(W ), which enables the study of Kerr-type

nonlinearities [11].

14

==J40 FFT
12 4D FFT anp

Intensity (a.u.)

o 0.1 0.2 0.3 04
Frequency [THz]

Figure 6: Fourier transform of the 14D emission function
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Figure 7: Fourier transform of the 16S emission function

Appendix A: Calculation Details

Appendix A.1: Exciton Lifetimes
We have calculated the exciton lifetimes using the equations (26), (29),(40,41,42) and the values of p, uz from the Table 1, obtaining

for the coefficient 100, relevant for S excitons
[ in 0.0
sin fd
Tioo = 0.5f ‘ —11. (A1)
. \/singf} + (py)/ 112 )2 cos? 6

The case od D excitons is more complicated. If the exciton S can be considered as non-degenerate, for D excitons the band structure

must be taken into account. The D states reveal a splitting, where one state has a larger energy than other with the same principal
quantum number. We choose two states, which result from group-theoretical considerations [17], with representations(here for the
state 4D) 4DI'+I'+(3/2) (state 4D1), and 4DI'+(5/2) (state D2). The symmetry properties are reflected by in the Luttinger equations

for the hole effective masses (in Cu20 the electron mass is assumed to be isotropic)

o
Mpy = ——~—,
1.~ 2
mo
Mh| = — 5 (A2)
VL=
We take 72 75 “yafor the D1 state, and y2 = afor the D2 state. Using the values 71 = | 79,92 = 0.82,93=10:54[18], we

obtain /)| /[t = 0:673 for the D1 state and /¢||/ /== 1 for the D2 state, and

15 [ sin® @do
Moot = — o — 1.02555. .
16 , \/31112 # +0.673 cos? 6

15 [ sin®6do

hoa— — =
16 Y sin? 6 + cos2 6

1. (A.3)

Table A3: Exciton beatings characteristic frequencies of the II type

v = (Tgb.ny .y )L corresponding to (rnzD — n1S) transitions
noD | /nyS — 3 4 5 6 7

3,1 0.368 0.8

3,2 0.448 0.9

4,1 0.207 0.365

4,2 0.278  0.295

5,1 0.132 0.178

5,2 0.17 0.134

6 0.4 0.09  0.09

7 0.254 0.067

The results are reported in Tables A1 and A2, and illustrated in Figures 1 and 2. For n > 5 we have chosen the values for D1. In Table
A3 we present the values of quantum beats frequencies of the II type, calculated with the formula (20). For the lowest exciton states
3 n 5 the splitting D—D,D, is accounted for, thus A = E(@mD1) E ., A, =E@mD2) E_ and, correspondingly, ot Tapn? forn>5
A, = respectively. In addition, we have calculated some examples of frequencies of the I type beats (values in ps):

[ {LI8R SiG s ST
vpg =006 D41 — D42 (A.4)
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Appendix A.2: The Dependence on Temperature and the Laser Power

Since the crystal temperature is assumed to be proportional to the applied laser power W , we treat the exciton lifetimes shown in
Table A1 as the values at 7= 0, and calculate the coherence times as functions of the applied laser power by equation (76 The results
are given in Table AS. The dependence of exciton lifetimes on state number and laser power can be compared with the dependence
on temperature and state number. Having in mind the experiments reported in [6], we consider the S states n =5, 7 and calculate the

lifetimes as function of temperature for the given states. We use the formulas

Ta(T) = Toexp (ny1 — n*y2 = 13 T)

v35 = 0.0188, 737 =0.0376, To~3x 1073, (A.5)

T = 2.502. Yo = 0.192.

The results are presented in Table A6.
S5 ETw00 E.o0 Exp.Taoo (41) (42) (43)
2  2145.77 26.3 0.7+0.12 088 0.54 0.96
3 2160.4 11.69 3.1%1 2.54 2.52 3.08
4 2165.5 6.58 5102 5.48 5.51 6.64
5 2167.87 4.2 114+ 2 10,08  10.11 11.17
6 2169.157 2.92 19+15 16.72 16.61 15.69
7 216993 2147 20£1.5 26,76 25,26 19.24
8 2170436 1.644 21.5+2 37.57 36.32 21.42
a9 2170.78 1.3 224+ 25 5253 50.04 2243

Table A1: Exciton S ([n00)) eigenenergies En00, resonances ET n00 (meV), and lifetimes tn00 (ps), comparison of experimental
data (Exp.) [6] and results of different scalings, obtained from equations (41-43)

D | E.a Exp.ma22 (41) (42) (43)
3.1 2161.92 1029 32402 292 3.01 3.2
32 216242 1041 32402 291 297 3.7
41 216636 586 5H.7+05 6.3 6.6 6.89
42 216665 579 57+05 6.3 7.04 7.97
51 216842 375 105+09 11.59 1214 1156
52 21686 370 105+09 131 13.75 13
6 216954 257 175%£12 1839 19976 17.58

T 217021 189 19+1.5 288 304 1992

8 217065 1.45 2249 41.07 43 22.31
9 217095 114 23+25 4739 G604 23.27

Table A2: Exciton D (In22)) eigenenergies E ,, resonances E, , (meV), and lifetimes w22 (ps) for both types of exciton D,

comparison of experimental data (Exp.) [6] and results of different scalings, obtained from equations (41)-(43). The experimental

values for D1, D2 excitons (|n22), ,) from [6]

n ]l /nmS— 3 4 5 G 7
3.1 2.31 H
3,2 2.815
4,1 1.3 22
4,2 1.747 1.853
5,1 0.820 1.118
5,2 1.068 0.842
(] 2.51 .56 0.56
7 1.6 042

Table A4: Exciton beatings characteristic frequencies Q_  of the II type corresponding to (n,D — n,S) transitions
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n/W 0 12 50 150
3 2.6 24 186 0.96
4 523 483 3.76 194
5 9.73 9.0 7.0 3.61
6 16.7 15.43 12 6.2
7 26.45 2444 190 9.8

Table AS: Lifetimes tn, vs laser power W (tn,, in ps, W in mW)

T/tn Exp.75 Th. Exp. 7 Th
0 10.49 18.66
5 942 9.55 14+2 1547
8 8+2 9.0 13+ 2 13.8
10 bk 2 8.7 15+2 12.8
15 s o8 7.9 13+2 10.6
20 T2 T2 13+2 8.8
30 6+ 2 5.97 9+2 6.04
40 bzl 4.94 4+2 4.14
50 b 4.09 73+2 2.84

Table A6: Lifetime vs temperature, n = 5, 7(|500), |700)), experimental data from [6], theoretical results from Eq. (78), times in

ps, temperature in K

States  fnoo/f100 "pure" Th.

1100) 1 1

1200) 1/8 1/8.4
1300) 1/27 1/30
1400) 1/64 1/67
1500) 1/125 1/131
1600) 1/216 1/227
1700) 1/343 1/360
1800) 1/512 1/538

Table A7: Oscillator strengths fn00 “pure”, and results of calculations (82) (Th, in terms of M2 ) and A8 we present the results of
calculations of exciton oscillator strength for S and D exciton.

Appendix A.3: Linear and Nonlinear Polarization, Time Dependence
The time evolution of exciton population at the given exciton state is described by the equation (99). Below we present the formulas

derived from the mentioned
-.qtliifl"‘h'- '_,I.r,.-_q- |J-Il,.l'.(’. “v‘:-l.le“:-
.'i'_"_’} 0.51 0.83
122} .48 0.57
522} 0.28 0.34
622) 0.18 0.21
722) 0.12 018
822) 0.08 0.122

Table A8: Oscillator strengths f,, “pure” ((88) manuscript), and results of calculations (Results, (87) manuscript), all oscillator
strength multiplied by 10 M? p*))
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ll- T ‘\i‘h.r' "'"I.’I: ’\‘”:l.ﬁ |

12 10 73 J6.48 129

50 20 36 18.24 64.97
100 40 18.33 9.12 32.48
150 50 14.66 7.29 26.0

Table A9: Variation of 1’s defined in equations (87) in the manuscript, with the laser power and temperature

Laser power  Asoosoo Broorsoo (A + B)o
12 27.76 27.45 55.21
50 16.9 17.6 M5
100 3.516 5.16 B.6T
150 1.14 2.59 3.73

Table A10: Quantities A, , 2500P0) Bgous0o(PO), (AB)0 = (A5, o+ B5,.), laser power in mW, equation for the data of 4D (I

4D)
and 6S (I excitons (linear part only)

Iip = 0.625exp (—0.11\/(1: —1)2 4 0.3)

[1 +0.0476 cos(0.377 )
+ 0.32cos(1.3t) + 0.3987 cos(1.76 ¢) (A.6)

+ 0.105 cos(2.29t) + 0.132 cos(1.85¢)

1+ 0.684 cos(0.25 t)

Igs = exp (—O.IM)

+0.0074 cos(0.377 ) + 0.148 cos(0.628 1) (A7)

+ 0.296 cos(1.5¢) + 0.44 cos(1.88 T)} .

Note that the lifetimes 1 are taken for laser power S0mW. The resulting line shapes are displayed in Figures 3 and 4. When the
nonlinear part is accounted for, we first must determine the dependence of quantities A , B_ on the laser power (probe temperature).
We perform the calculations for the 5S state. Using the quantities A (Table A9) we obtain the A, , B, , values

(Table A10). For the S5 state we obtain t ' =9.73, and
v5(po)(As + Bs) = 71 exp(—0.021 W). (A.8)

Separating the parameters appropriate for the state 5S, and taking t1 = 0.5, we obtain

®) — 9745 x 1078 [ 22 ) bW
Xos = =050 X 073)°

b

x [¢5(p0)(As + Bs)] (H)4

= W exp(—0.0144W) x 3.85 x 107°.

Using the function y_ ,5(t) in the form ((52), manuscript)

osc’
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Yose,s = T13 X Yose,5(t),
Dose,s(t) = 1+ 0.285 cos(0.829)

+ 0.356 cos(1.068¢) + 0.277 cos(2.51t)
+ 0.036 cos(2.29t) + 0.045 cos(1.85¢),
T500(12) =9, T500(50) =7,

T500(150) = 3.61,

(A.9)

We obtain the total normalized emission (99), for the 5S exciton, in the form

Ts5

1a(t. W) = Nogexp (~LL07)) Fones(t

X [1 = X(W)doses(®)]

where

X (W) = 2.745 x 1072W exp(—0.0144W)

~ 0.87exp [0.035 W — (1.925 x 107%) W?]

(A.10)

(A.11)

and N, is a normalization constant. As can be seen from the above equation, the function X(W) has a Gaussian shape, with X(12) =
0.277 and the maximum at W~ 90. Than the function decreases to X(150) = 0.468.

References
1. Kazimierczuk T Frohlich D Scheel S Stolz H and Bayer

M 2014 Giant Rydberg excitons in the copper oxide Ct120
Nature 514 343-347
Thewes J Heckotter J Kazimierczuk T ABmann M Frohlich

D Bayer M. Semina M A and Glazov M M 2015 Observation
of High Angular Momentum Excitons in Cuprous Oxide
Phys. Rev. Lett. 115, 027402 (2015)

ABmann M and Bayer M 2020 Semiconductor Rydberg
Physics, Advanced Quantum Technologies 1900134
Konzelmann A Frank B and Giessen H 2020 Quantum
confined Rydberg excitons in reduced dimensions J. Phys.
B: At. Mol. opt. Phys. 53 024001

Ziemkiewicz D _Karpifiski K Czajkowski G and
ZielifiskaRaczyfiska S 2020 Excitons in Cu20; From
quantum dots to bulk crystals and additional boundary
conditions for Rydberg exciton-polaritons Phys. Rev. B
101 205202

Ziemkiewicz D Czajkowski G and Zielifiska-Raczyfiska S

2024 Optical properties of Rydberg excitons in Cu20based
superlattices Phys. Rev. B 109, 085309

Chakrabarti P Morin K Lagarde D Marie X and Boulier T
2025 Direct measurement Of the lifetime and coherence
time of Cu20 Rydberg excitons Phys. Rev. Lett. 134, 126902
Zielifiska-Raczyfiska S and Ziemkiewicz D 2025 Quantum
interference of Rydberg excitons in Cu20:

uantum beats

10.

11.

12.

13.

14.

15.

16.

Phys. Rev. B 111 205201

Tait W C 1972 Quantum theory of a basic light-matter
interation Phys. Rev. B 648

Zhao H Wachter S and Kalt H 2002 Effect of quantum
confinement on exciton-phonon interactions Phys. Rev. B
4211218

Heckotter J Panda B Brigelmann K ABmann M and Bayer
M 2024 Temperature Study of High-n Rydberg States in
Cu20 Adv. Quantum Technol. 2300426 DOI:10.1002/

ute.202300426
Stolz H Schone F and Semkat D 2018 Interaction of Rydberg

excitons in cuprous oxide with phonons and photons: optical
linewidth and polariton effect New J. Phys. 20 023019
Heckotter ] Rommel P Main J ABmann M and Bayer M 2021

Impact of band mixing on the fine structure of the D-exciton
shell in cuprous oxide Physica Status Solidi (RRL) - Rapid

Research Letters 15 2100335

Ziemkiewicz D Knez D Garcia E P Zielifiska-Raczyfiska
S Czajkowski G Salandrino A Kharintsev S S Noskov A 1

Potma E O and Fishman D A 2024. Photon Absorption in
Silicon Using Real Density Matrix Approach Journ. Chem.
Phys. 161 144117

Zielifiska-Raczyfiska S Czajkowski G and Ziemkiewicz D

2016 Optical properties of Rydberg excitons and polaritons
Phys. Rev. B 93 075206

Morin C Tignon J Mangeney J Dhillon S Czajkowski G

Open Access J Phys & Math


https://openpubglobal.com/journal/open-access-journal-of-physics-mathematics-issn-3068-7527-

Karpifiski K Zielifiska-Raczyfiska S Ziemkiewicz D and
Boulier T 2022 Self-Kerr effect across the yellow Rydberg

series of excitons in Cu20 Phys. Rev. Lett. 129 137401

17. Bassani F and Parravicini G P 1975 Electronic States and
Optical Trunsitions in Solids (Pergamon Press Oxford)
Schweiner F Main J Wunner G and Uihlein C 2017 Even
exciton series in Cu20 Phys. Rev. B 95 195201

18. Klingshirn C 2012 Semiconductor Optics (Berlin, Springer)

Copyright: ©2025 Czajkowski, G. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and oduction in any

medium, provided the original author and source are credited.

Open Access J Phys & Math



https://openpubglobal.com/journal/open-access-journal-of-physics-mathematics-issn-3068-7527-

